字體:小 中 大 | |
|
|
2015/11/10 16:05:19瀏覽2337|回應57|推薦12 | |
這是我一個讀者對貝式機率的解釋:貝氏定理的精髓,就是必須根據每一個實際發生的案例,去修正對母群體的估計。 這位讀者甚為推崇貝式機率,覺得是一個偉大的定理(我猜可能是從Vie Science這本雜誌來的,因為他在中國大陸有翻譯版而且做過貝式機率的專輯),但是因為一般在學校是不會教貝式定理的,如果只是推出術語,實際上只不過是一種賣弄學問的方式,今天正好有空,所以就來說說貝式機率吧! 我們在學校時都教過,如果丟一個硬幣,理論上正反面會出現機率一樣,這種情形叫做零假設,也就是沒有任何預先傾向,我想大家都學過也應該沒有問題,但是大家看看下面情形時,你會怎麼想(F:正面,R:背面): 1:FRRFFRRRFF 2:RFRFRFRRFR 3:FRRRRRRRRR 丟了十次銅板後,請問我再丟一次銅板時,你認為是正面機率有多?如果是零假設成立,那無論哪種情形(1/2/3)機率都應該是0.5,這就大家一般所學的機率。如果是二種情形,大家也應該都沒有爭議,第一種情形時,有些會認為還是0.5,因為出現機率相同(各出現五次),但有些人可能會遲疑一下,因為好像有重複的模式發生,兩次RR兩次FF,然後三次RRR,那應該也會三次FFF吧!所以F應該比例高一些吧!而如果是第三種情形,我想大部分人會認為R出現機率會比F高吧!(這也在賭場的賭徒賭輪盤時相似的心態),但是等等,如果你相信銅板是沒有作弊的,那無論何種情形,R和F出現的機率都相同,都應該是0.5啊!連續出現九次R的機率是0.59=0.00195,約為千分之二,雖然很小,但是出現的可能性並不是沒有,這時候重點就來了,這時如果你根據已發生的事實來懷疑銅板根本有問題(作弊),譬如說你認為R的機率事實是0.9,而F是0.1,那出現第三種情形的機會就是0.99=0.387,那就有接近四成可能性,因此你會猜下次出現R的機率是0.9,這就是所謂依事實來修正母群體的估計。 說到這裡,我想大家應該就會知道問題出在哪裡,而且為什麼學校沒有教你的原因了,因為事實怎麼認定是一件很困難的事?很容易成了個人判斷,這就像剛才我用銅板做的例子,你如何認定銅板有作弊呢?只因為連續出現九次R,因為這很難有效算出和認定。我再舉一個例子,有強盜前科的人,當住家附近發生搶案時,大家都會認定他有嫌疑,這就簡單點出重點,社會學家都會告訴我們,我們不該歧視有前科的人,所以理論上我們應該是零假設(每一個人犯罪機率相同),但是大家有嗎?而且更重要是大家根據前科這一事實所推斷出的機率也是每一個人不同,有人認為再犯機率是0.3,有人是0.5,有人認為是0。再舉一個例子,一樣的馬習會,也因為綠營和藍營的假設機率不同而導致結論完全不一樣,這就是對母體機率修正(馬英九賣台機率有多高?)每個人不同而導致的問題了! 當然,貝式機率在嚴格的數學條件下已經被證明是對的,我並不是在說此原理有誤,但是當它應用到實際生活時,所謂的基於事實而所做的調整,常常是一種偏見的表現,但是因為裹上一層學術外衣,好像就變成了無懈可擊,但是這根本就不是那麼一回事。看看我那位讀者常常用的概述性和絕對式的命題式發言,這就替我剛剛的說明做下最好的註解。 |
|
( 知識學習|科學百科 ) |