網路城邦
上一篇 回創作列表 下一篇   字體:
固態物理: 倒晶格
2021/02/14 16:19:41瀏覽5638|回應0|推薦0

Chap. 2 Reciprocal lattice

crystal structure: basis + lattice

bobe beam for studying crystal structure: 1. x rays 光子與electron作用, =1-10Å. 2. neutron nuclei. 3. electron

Braggs law

2dsin=n 加強性干涉

n(r) electron concentration charge density, r=r+T 滿足週期性關係

satisfied n(r+T )=n(r)=n( r) → n( r)periodic, T =ua+ua+ua

consider 1-D n(x+a)=n(x), T =ua,     n(x) can be represented by a Fourier series

n(x)=n+>[Cpcos(2πpx/a)+Spsin(2πpx/a)]

n(x+a)=n+>[Cpcos(2πpx/a+2πp)+Spsin(2πpx/a+2πp)]=n(x)

n(x)=n+>[Cp(ei2πpx/a+e-i2πpx/a)/2-iSp(ei2πpx/a-e-i2πpx/a)/2]

=n+>[ei2πpx/a(Cp-iSp)/2+e-i2πpx/a(Cp+iSp)/2]

=pnp ei2πpx/a

Cp, Sp are real, n-p=np* n-p=½( Cp-iSp), np*=½( Cp+iSp)

n(x)=pnp ei2πpx/a 2π/a is 1-D reciprocal lattice vector.

In 3-D, we have to define a vector G and satisfy n(r+T )=n(r)=n(r)

n(r)=G nGeiGr

倒空間平移向量: G=vb+vb₂+v₃b₃,

b₁=2π[(aa)/(aaa)], b₂=2π[(aa)/(aaa)], b₃=2π[(aa)/(aaa)]

i.e. V= aaa

ba=2π , ba=0, ba=0. If a, a, a are primitive axes, then b, b, b are primitive axes.

bᵢ•aj=2πδj, δj=1(i=j) or δj=0(i≠j)

reciprocal lattice used in x ray diffraction

n(r+T )=G nGeiG(r +T)=G nGeiGr G nGeiG T=n(r)ei2π(vu+vu₂+v₃u)=n(r)

the amplitude of an incident plane wave at r is A=Aei(kr-wt)

at site 1, amplitude is A=Ae-iwt

at site 2, amplitude is A=Aei(kρ-wt)

x ray scattered from #1 electron, amplitude =2kG=|G

Step 1. if G=hb₁+kb₂ +lbthen G is normal to the crystal plane (h,k,l)

找平面的法線方向, n=PPPP=(a/k-a/h)(a/l-a/h)=1/kl(aa)-1/hl(aa)-1/hk(aa)

n=1/kl(aa)-1/hl(aa)-1/hk(aa)=(1/hkl)[h(aa)+k(aa)+l(aa)]

=((aaa)/hkl){[h(aa)/(aaa)]+2π[k(aa)/(aaa)]+2π[l(aa)/(aaa)]}

=((aaa)/hkl)[hb₁+kb₂ +lb]=(V/hkl) G // G                ⸪ n // GG ┴ (hkl)

Step 2. 平面間距離 d(hkl)=2π/|G|

包含通過原點與(hkl)平行的面, OPG=|OP||G|cosθd(hkl)=|OP|cosθ=(OPG)/|G|=

{(a/h)•[hb₁+kb₂ +lb]}/|G|=2π/|G|

Step 3. 2kG=|G

k+G=kk-k=G i.e. |k|=|k|

k²=kk=|k|²=(k+G)(k+G)=|k|²+2kG+|G|² → 2kG+|G|²=0 → 2k•(-G)+|-G|²=0 → 2kG=|G

2|k||G|cos(90°+θ)+|G|²=0 → -2|k||G|sinθ+|G|²=0 → 2|k|sinθ=|G|=2πn/d(hkl)

2(2π/λ)sinθ=2πn/d(hkl) ⸫ 2d(hkl) sinθ=nλ another statement of Bragg’s law

Laue equation: k的方向, k-k=Δk =G if G=vb+vb₂+v₃b

aΔk =aG=2πv₁, aΔk =2πv₂, aΔk =2πv₃

Edwald construction

Brillouin zones: is defined as a wigner-seitz primitive cell in the reciprocal lattice.

Diffraction condition: 2kG=|G除以4, k•(G/2)=|G/2

A•(G/2)=|A||G/2|cosθ=|A|cosθ|G/2|=|G/2

G原子平面跡 (plane trace), 原子平面跡是kk的分角線1/2|G|=|k₀|sinθ , |k₀|=1/λ, λ=2/|G|sin θ, λ=2d sin θ 比較, |G|=1/d ,G //原子平面之法向量(有建設性干涉的原子平面⊥原子平面跡

{G}代表晶體可產生“建設性”干涉的平面組,其方向為平行平面之法向量且長度為對應的平面間距

實空間與倒空間(晶體結構與繞射花樣 (Band Gap)為何需要另一個空間?

倒空間能使我們方便描述及處理晶體繞射的問題

事實上,“倒”晶格空間和“實”晶格空間一樣的“真實”

我們可以把晶體想成有兩個“晶格”一個“實”晶格,一個“倒”晶格實晶格是晶體本身,倒晶格則是繞射空間的點陣

1) 倒空間: 與實空間一樣真實

2) 倒空間的一點相對於實空間的一平面

3)倒空間的一點至原點的距離等於平面間距的倒數

Real space vs. Reciprocal space

實空間平移向量,r=nt+nt₂+n₃t₃, primitive cell是晶體中只含一個原子的unit cell, primitive unit cell為單位取實空間平移向量, e.g. BCC

t₁=a/2(-x+y+z), t₂=a/2(x-y+z), t₃=a/2(x+y-z)

b₁=2π[(tt)/(ttt)], b₂=2π[(tt)/(ttt)], b₃=2π[(tt)/(ttt)] i.e. V= ttt

b₁=2π[(a²/4)(2y+2z)]/(a³/2)=2π/a(y+z)=2π/a(011), b₂=2π/a(101), b₃=2π/a(110)

  1. reciprocal lattice to S.C. lattice

crystal lattice: a=ax, a=ay, a=az V=aaa=a³

reciprocal lattice: b=(2π/a)x, b=(2π/a)y, b=(2π/a)z V=bbb=(2π/a

remind**G=vb+vb+vb,

b=2π(aa/aaa), b=2π(aa/aaa), b=2π(aa/aaa)

ba=2π, ba=0, ba=0

第一不連續的cubic邊長=2/a

the boundary of the 1st Brillouin zone: the planes normal to the six reciprocal lattice vectors: ±½b=±(π/a)x, ±½b=±(π/a)y, ±½b=±(π/a)z

  1. reciprocal lattice to B.C.C. lattice

crystal lattice: a=a/2(-x+y+z), a=a/2(x-y+z), a=a/2(x+y-z) V=|aaa|

=(a/2)³ = a³/2

reciprocal lattice:

b=(2π/a)(y+z), b=(2π/a)(x+z), b=(2π/a)(x+y)

V=bbb=(2π/a =2(2π/a volume of 1st BZ of B.C.C. lattice

B.C.C. reciprocal lattice = F.C.C.的晶格

the boundary of the 1st Brillouin zone: the planes normal to the twelve reciprocal lattice vectors: b=(π/a)(±y±z), b=(π/a)(±x±z), b=(π/a)(±x±y)

  1. reciprocal lattice to F.C.C. lattice

crystal lattice: a=a/2(y+z), a=a/2(x+z), a=a/2(x+y)

V=|aaa|=(a/2)³ = a³/4

reciprocal lattice: b=(2π/a)(-x+y+z), b=(2π/a)(x-y+z), b=(2π/a)(x+y-z)

F.C.C. reciprocal lattice = B.C.C.的晶格

第一不連續的 8 vectors: (π/a)(±x±y±z)

Fourier analysis of the basis

Consider one cell, the amplitude of x ray scatter from a crystal of N cells can be written as:

FG=N∫сеӏӏdVn(r)e-ikr=N∫сеӏӏdVn(r)e-iG r=NSG

structure factor, SG=сеӏӏdVn(r)e-iG r, 分成atom, electron兩邊討論

SG=сеӏӏdVn(r)e-iG r=сеӏӏdV∑j nj(r-rj)e-iG r=j сеӏӏdVnj(r-rj)e-iG r ,

let ρ=r-rj SG=j сеӏӏdVnj(ρ)e-iG r 在積分號rj 為常數

SG=j сеӏӏdVnj(ρ)e-iG ∙(ρ+ rj)=j сеӏӏdVnj(ρ)e-iG ρ e-iG rj=j e-iG rjсеӏӏdVnj(ρ)e-iG ρ

=j e-iG rjfj

fj: 考慮何種atom對電子的影響, we called it atom form factor.

首項級數和: 是考慮atom的位置, 亦即晶體結構的影響

考慮basis中的atom位置 rj=xja+yja+zja 0xj, yj, zj≤1

G=vb+vb+vb, baj=2πδj, δj=0(ij) or δj=1(i=j)

G rj=2π(vxj+vyj+vzj) SG=j e-i2π(vxj+vyj+vzj)fj

  1. Structure factor of the S.C. lattice

basis = one atom (0,0,0) SG=fje-i2π(0)=f

any set of (v1,v2,v3) can satisfy the constructive diffraction condition.

  1. Structure factor of the B.C.C. lattice

conventional cell: positions of atoms (0,0,0), (½,½,½)

SG=j e-i2π(vxj+vyj+vzj)fj=f∙e-i2π(0)+f∙e-iπ(v+v+v)=f∙[1+e-iπ(v+v+v)]

e-iθ=cosθ-isinθ, θ=nπ if v+v+v=2n, SG=2f (constructive) or v1+v2+v3=2n+1, SG=0 (destructive)

  1. Structure factor of the F.C.C. lattice

positions of atoms (0,0,0), (½,0,½), (½,½,0), (0,½,½)

SG=f∙[1+e-iπ(v+v)+e-iπ(v+v)+e-iπ(v+v)]

if (i)v+v+v=2n, SG=4f (constructive) (ii)v1+v2+v3=2n+1, SG=4f (constructive) (iii)1odd, 2even SG=0 (destructive) (iv)2odd, 1even SG=0 (destructive)

ex. Structure factor of KCl

position of atom in a cell:

Cl- : (0,0,0), (½,0,½), (½,½,0), (0,½,½)

K+ : (½,½,½), (0,0,½), (0,½,0), (½,0,0)

SG=f(K)[e-iπ(v+v+v)+e-iπv+e-iπv+e-iπv]+f(Cl)[1+e-iπ(v+v)+e-iπ(v+v)+e-iπ(v+v)]

if (i)v+v+v=2n, SG=4[f(K)+f(Cl)] (constructive) (ii)v1+v2+v3=2n+1, SG=4f[f(Cl)-f(K)]0 (ClK) (iii)1odd, 2even SG=0 (destructive) (iv)2odd, 1even SG=0 (destructive)

p.s. KBr f(Br)f(K) SG=4[f(K)-f(Br)]≠0

Summary

FG=N∫сеӏӏdVn(r)e-i∆kr=N∫сеӏӏdVn(r)e-iG r=N∙SG

SG=j сеӏӏdVnj(ρ)e-iG ∙(ρ+ rj)=j сеӏӏdVnj(ρ)e-iG ρ e-iG rj=j e-iG rjсеӏӏdVnj(ρ)e-iG ρ

=j e-iG rjfj

fj = atom form factor scattered radiation from a single atom

fj =сеӏӏdVnj(ρ)e-iG ρ

k-k=k=G

|k|=|k| ⸫|G|=2|k|sinθ =2(2π/λ)sinθ =(4π/λ)sinθ f(|G|)=f(sinθ/λ)

consider a spherical distribution

n(r)=n(r,,)=n(r)只隨r改變, ,改變均不變(球面上密度都一樣)

dV=r²sindrdd

fj =∫∫∫r²sindrdd[n(r)e-iG r]=r²drsin ddn(r)e-i|G|∙|r|cosθ =2πr²n(r)drsine-iGrcosθd

P.S. sine-iGrcosθd=e-iGrcosθd(-cos)=e-iGrcosθ/iGr|π0=(eiGr-e-iGr)/iGr=2sin(Gr)/Gr

fj =4π[r²n(r)sin(Gr)/Gr]dr

if z(electron density)集中在r=0, n(r)=(r),

limit δ(x)=1/τ, 0<x<τ or =0, |x|>τ when τ→0

r→0, sin(Gr)/Gr=1

fj =4π[r²(r)]dr=∫zδ(r)∙4πr²dr=∫zδ(r)∙dV=z

( 知識學習隨堂筆記 )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=ben168&aid=156410397