網路城邦
上一篇 回創作列表 下一篇   字體:
氣體與凝態的反應
2020/09/29 21:43:41瀏覽264|回應0|推薦0

Ch. 12 氣體與凝態的反應

氧化反應: mM₍ₛ₎ + n/2Og = MₘOₙ₍ₛ₎ 通式

1. G⁰≡ GMₘOₙ-mGM-(n/2)GO=f(T) 2. K≡pO/ 3. G⁰=-RTlnK=nRT/2(lnpO)=f(T)

G(T)≈A+BT 近似簡化

§Ellingham diagram, fig.12-13

stability” of metals: resistant to oxidation, 方便起見,1mole O為準

M₍ₛ₎ + Og = MOₛ₎ G⁰=H⁰-TS⁰ → A=H⁰, B=-S⁰=-[SMO₂ₛ₎-SMₛ₎-SOg]≈SOg₎>0, 斜率>0

e.g. 2Co₍ₛ₎+O₂₍g₎=2CoO₍ₛ₎ G⁰=-467800+143.7T, 2Mn₍ₛ₎+O₂₍g₎=2MnO₍ₛ₎ G⁰=-769400+145.6T

(i)2A₍ₛ₎+O₂₍g₎=2AO₍ₛ₎ G₁⁰ (ii)B₍ₛ₎+O₂₍g₎=BO₂₍ₛ₎ G₂⁰

(iii)=(ii)-(i) B₍ₛ₎+2AO₍ₛ₎=2A₍ₛ₎+BO₂₍ₛ₎ G₃⁰=G₂⁰-G₁⁰ if T<Tᴇ, G₃⁰<0 → A₍ₛ₎, BO₂₍ₛ₎ stable; if T>Tᴇ, G₃⁰>0 → B₍ₛ₎, AO₍ₛ₎ stable

stability of metals: 通常Gᴍ⁰<0, |Gᴍ⁰|越小者,抗氧化能力越好

氧壓如何加入Ellingham diagram

M₍ₛ₎ + Og = MOₛ₎ G(T)=A+BT=-RTlnK=-RTln(pO₂)⁻¹=RTln(pO₂)

G⁰(T)=Rln(pO₂)∙T if pO₂ fixed, ∆G⁰~T; when pO₂=1 atm, ln(pO₂)=0; if pO₂<1 atm, ln(pO₂)<0

e.g. (i)2A₍ₛ₎+O₂₍g₎=2AO₍ₛ₎ and (ii)B₍ₛ₎+O₂₍g₎=BO₂₍ₛ₎ For metal A at T₁, pO₂=? in equilibrium

0b (pO₂)eq=10⁻²⁰ atm

ab=∆G⁰, O₂(P=1 atm) → (pO₂=10⁻²⁰ atm)

G⁰=∫₀dG=∫=pᴼ₂RTdlnP=RTlnpO₂

at T, initial pO₂=1 atm → A, B oxidised.

Point a → A oxidation stops.

ab → AO reduction, B oxidation as pO₂ lowering down.

Point b → B oxidation stops.

§12-6 stability of metals(or oxides) in CO/CO(or H/HO) mixture maintain very low pO₂ with CO/CO(or H/HO) mixture

1. reducing MO with CO/CO mixture

2COg + Og = 2COg....(*1) G₁⁰=-564800+173.62T,

G₁⁰=-RTlnK=-RTln(pCO₂²/pCO²pO₂)=2RTln(pCO/pCO₂)+RTln(pO₂)

ln(pO₂)=-2ln(pCO/pCO₂)+G₁⁰/RT 已知T₀, pCO/pCO₂ 的條件, 可求得(pO₂)eq*¹

consider M₍ₛ₎ + Og = MOₛ₎....(*2) G=-RTlnK=RTln(pO₂) ln(pO₂)=G/RT (pO₂)eq*²

if (pO₂)eq*¹<(pO₂)eq*², no oxidation of M

2. nomographic scale of (pCO/pCO₂)

G₁⁰= 2GCO₂-2GCO-GO 1 atm 下的標準狀態, if (pCO/pCO₂)=1/P

2COg₎(1 atm) = 2COg₎(P atm)....(*3) G=2RTlnP (*4)=(*1)+(*3)

2COg₎(1 atm) + Og₎(1 atm) = 2COg₎(P atm)....(*4) G₄⁰=-564800+173.62T+2RTlnP

G₄⁰=H⁰-TS=-564800+[173.62-2Rln(1/P)]T, H⁰=-564800, S=-[173.62-2Rln(1/P)]

For fixed P or 1/P, G₄⁰~T; when 1/P=1, G₄⁰=G₁⁰; if 1/P>1, G₄⁰的斜率變小; 1/P<1, G₄⁰的斜率變大

3. using CO/CO₂ to reduce MO

M₍ₛ₎ + Og = MOₛ₎....(*5) G=RTln(pO₂)

(*1)-(*5) 2COg₎(1 atm) + MOₛ₎ = 2COg₎(1 atm) + M₍ₛ₎....(*ix)

Gᵢₓ=-2RTln(pCO₂/pCO)=2RTln(pCO/pCO₂) 1. at Tₛ, pCO/pCO₂=1 → Gᵢₓ=0 2. fixed pCO/pCO₂, Tᵣ>Tₛ → no oxidation of M 3. fixed pCO/pCO₂, Tᵤ<Tₛ → M oxidised

H₂/H₂O mixture的方式和CO/CO mixture一樣

Q1: T=1000℃, pO₂=10⁻²⁶ atm → pCO/pCO₂=? pH₂/pH₂O=?

Q2: e.g. Si at 800℃, pO₂ ? without oxidation, pCO/pCO₂? pH₂/pH₂O?

§12-5 effect of temperature on Ellingham lines

Ellingham line: M₍ₛ₎ + Og = MOₛ₎ G(T)≈A+BT=H⁰-TS

e.g. A₍ₛ₎+O₂₍g₎=AO₂₍ₛ₎...(1), at T,ᴀ A₍ₛ₎ = A₍ₗ₎...(2) → (1)-(2) A₍ₗ₎+O₂₍g₎=AO₂₍ₛ₎...(3)

H₃⁰=H⁰ᴀᴏ₍ₛ₎-H⁰ᴏg₎-H⁰ᴀ₍ₗ₎=H⁰ᴀᴏ₍ₛ₎-H⁰ᴏg₎-H⁰ᴀ₍ₛ₎+H⁰ᴀ₍ₛ₎-H⁰ᴀ₍ₗ₎=H₁⁰-H⁰ₘ,ᴀ

S₃⁰=S₁⁰-S⁰ₘ,ᴀ=-Sg₎-S⁰ₘ,ᴀ=-(Sg₎+S⁰ₘ,ᴀ)

at T,ᴀᴏ₂ AO₂₍ₛ₎ = AO₂₍ₗ₎...(4) → (1)+(4) A₍ₛ₎+O₂₍g₎=AO₂₍ₗ₎...(5)

H₅⁰=H⁰ᴀᴏ₍ₗ₎-H⁰ᴏg₎-H⁰ᴀ₍ₛ₎=H⁰ᴀᴏ₍ₗ₎-H⁰ᴀᴏ₍ₛ₎+H⁰ᴀᴏ₍ₛ₎-H⁰ᴏg₎-H⁰ᴀ₍ₛ₎=H⁰ₘ,ᴀᴏ₂+H₁⁰

S₅⁰=S⁰ₘ,ᴀᴏ₂+S₁⁰=-(Sg₎-S⁰ₘ,ᴀᴏ₂)

e.g. Fe₍ₛ₎ + Cl₂₍g₎ = FeCl₂₍ₛ₎...(1) G⁰=-346300-12.68TlnT+212.9T A+BT

Fe₍ₛ₎ + Cl₂₍g₎ = FeCl₂₍ₗ₎...(2) G⁰=-286400+63.68T

Fe₍ₛ₎ + Cl₂₍g₎ = FeCl₂g...(3) G⁰=-105600+41.8TlnT-375.1TA+BT

draw Ellingham line. Given: T, FeCl₂=969K, T, FeCl₂=1298K

(2)-(1) FeCl₂₍ₛ₎ = FeCl₂₍ₗ₎...(4) G⁰=∆G⁰-∆G⁰=59900+12.68TlnT-149.22T

H=-T²[∂(G⁰/T)∕∂T]ₚ=59900-12.68T=47613, ∆S=-(G∕∂T)ₚ=-12.68lnT+136.54=49.35

G A+BT, A=-286400-∆H⁰=334013 J, B=63.68+∆S⁰=113.03

(3)-(2) FeCl₂₍ₗ₎ = FeCl₂g...(5) Gb⁰=∆G⁰-∆G⁰=180800+41.8TlnT-438.78T

Hb=-T²[∂(∆Gb/T)∕∂T]ₚ=180800-41.8T=126543J, ∆Sb=-(Gb∕∂T)ₚ=-41.8lnT+396.98=97.33

GA+BT, A=-286400+∆Hb⁰=-159856J, B= 63.68-∆Sb⁰=-33.65

§12-6 oxides of carbon(前段)

C₍ₛ₎ + Og₎ = COgG⁰, 2C₍ₛ₎ + Og₎ = 2CO₍gG用炭製造CO, CO

2*(1)-(2) 2CO₍g + Og₎ = 2COg₎, C₍ₛ₎ + COg₎ = 2CO₍gG⁰=-RTlnK=-RTln(pCO²/pCO₂)=f(T)

觀念: 溫度升高, (pCO/pCO₂)增加 e.g. 煉鐵的時候,高溫使還原氣CO增加,將鐵還原

怎麼控制 pCO/pCO₂

(1)C₍ₛ₎ + Og₎ = COgG⁰=-394100-0.84T

(2) 2C₍ₛ₎ + Og₎ = 2CO₍gG⁰=-223400-175.3T

(3)2CO₍g + Og₎ = 2COgG⁰=-564800+173.62T

(4)C₍ₛ₎ + COg₎ = 2CO₍gG⁰=170700-174.5T

G⁰=∆G⁰, T=978K. When T> T₀, G⁰>∆G pCO變大 T↑, pCO/pCO₂

C₍ₛ₎ + Og₎ = COgG⁰=GCO⁰-GO⁰- GC

        1atm     1atm

(5) COg₎ = COgG⁰=RTlnP

      1atm       P atm

(5)+(1) C₍ₛ₎ + Og₎ = COgG⁰=∆G⁰+∆G⁰=-394100-0.84T+RTlnP=-394100-(0.84-RlnP)T

                     1atm     P atm

(7) 2C₍ₛ₎ + Og₎ = 2CO₍gG⁰=-223400-175.3T+2RTlnP=-223400-(175.3-2RlnP)T

                1 atm    Patm

§12-7 upper limit of (pCO/pCO₂) at fixed T

(pCO/pCO₂)增加會促使反應往左,造成碳析出 C₍ₛ₎ + COg₎ = 2CO₍g

e-G⁰/RT=K=(pCO²/pCO₂), if P=1 atm =pCO+pCO₂ pCO₂=1-pCO

K=pCO²/(1-pCO)=x=e-G⁰/RT ⸫pCO=-x/2+(x²+4x)½/2, pCO₂=(2+x)/2-(x²+4x)½/2

pCO/pCO₂=[-x+(x²+4x)½]/[(2+x)-(x²+4x)½] or lower limit pCO₂/pCO=[(2+x)-(x²+4x)½]/[-x+(x²+4x)½]

[∂(lnKₚ)∕∂T]ₚ=H/RT² vant Hoff eq. → [∂ln(pCO/pCO₂)∕∂(1/T)]ₚ=H/R

Ex-1. (1)CO₍g + ½Og₎ = COgG⁰=-282400+86.81T

(2)Hg + ½Og = H₂Og G=-246400+54.8T

(3)Co₍ₛ₎ + ½O₂₍g₎= CoO₍ₛ₎ G₃⁰=-233900+71.85T

which (H₂, CO) is more efficient reducing gas?

G⁰=∆GT₀=1125K when T<T₀, G⁰<∆G⁰, CO more efficient; if T>T₀, G⁰>∆G⁰, H more efficient.

How mny moles of CoO can be reduced by 1 mole of H at T or T?

(2)-(3) CoO₍ₛ₎ + Hg₎ = Co₍ₛ₎ + H₂OgG₄⁰=-12500-17.05T

T₁=873K, G₄⁰=-27385, e-G⁰/RT=43.5=K= pH₂O/pH₂=x/(1-x), x=0.9775

T₂=1673K, G₄⁰=-41025, e-G⁰/RT=19.1=K= pH₂O/pH₂=x/(1-x), x=0.95

How mny moles of CoO can be reduced by 1 mole of CO at T or T?

(1)-(3) CoO₍ₛ₎ + COg₎ = Co₍ₛ₎ + COgG₅⁰=-48500+14.96T

T₁=873K, G₅⁰=-35440, e-G⁰/RT=132=K= pCO₂/pCO=y/(1-y), y=0.992

T₂=1673K, G₅⁰=-23472, e-G⁰/RT=5.41=K= pCO₂/pCO=y/(1-y), y=0.844

Ex-2. ZnO₍ₛ₎ + COg₎ = Zng + COgG₁⁰=177800-111.2T at T=950℃=1223K

Q1: pᵢ=? if P=1 atm

G₁⁰=41802, e-G⁰/RT=0.0164=K=pZnpCO₂/pCO=pZn²/(1-2pZn), pZn=pCO₂=0.113 atm, pCO=0.774 atm

pZn=pCO₂, and P=1=pZn+pCO₂+pCO, pCO=1-2pZn

Q2: what is the critical pressure to condense liquid Zn from gas?

Given: lnpZn₍ₗ₎=-15250/T-1.255lnT+21.79 代入T=1223K, pZn=1.49 atm

0.0164=K=pZnpCO₂/pCO=pZn²/(Pc-2pZn), Pc=138.35 atm

Q3: pᵢ=? if P=150 atm

P>PcpZn=pZn=1.49 atm, 0.0164=K=pZnpCO₂/pCO...(1), P=150 atm=pZn+pCO₂+pCO...(2)聯立解

pZn=pZn=1.49 atm, pCO₂=1.61 atm, pCO=146.9 atm

Q4: ZnO₍ₛ₎ + C₎ = Zng + COgGₓ⁰=348500-285.7T, 2ZnO₍ₛ₎ + C₎ = 2Zng + COgGₓᵢ⁰=526300-396.8T at T=1223K, ask pᵢ=? P=?

K=e-G⁰/RT=1.094=pZn pCO, K=e-G⁰/RT=0.0177=pZn² pCO₂, ⸪nZn=nO ⸫nZn=nCO+2nCO₂, pZn=pCO+2pCO₂

1.094=(pCO+2pCO₂) pCO, 0.0177=(pCO+2pCO₂)² pCO₂, 聯立解一元三次式

Ex-4. 1 mole COg₎ and 1 mole Hg₎ mixed at T=1000K, P=1atm, ask pᵢ=?

           Hg + COg = H₂Og + COg....(1) G=36000-32.05T

ini         1         1              0            0

f          1-x       1-x            x             x          

K=pCOpH₂O/pHpCO₂ pH=pCO₂, pCO=pH₂O P=1=2(pH+pH₂O)

e-G⁰/RT=0.618=K=(0.5-pH)²/pH² pH=0.28 atm=pCO₂, pCO=0.22 atm=pH₂O

Q2: CaO₍ₛ₎ 投入, (2)CaO₍ₛ₎ + 5COg₎ = CaC₂₍ₛ₎ +3COgG(ii) = −37,480 + 300.7T,

(3)CaO₍ₛ₎ + H₂Og₎ = Ca(OH)₂₍ₛ₎ G(iii) = −117,600 +145T,

(4)CaO₍ₛ₎ + COg = CaCO₃₍ₛ₎ ∆G(iv) = −168,400 +144T pᵢ=?

Assume (2)(3)(4) equilibrium

K=e-G⁰/RT=1.782∙10⁻¹⁴= pCO₂³/pCO⁵ if pCO=0.22 atm, pCO₂=2.09∙10⁻⁶ atm 反應不會發生

K=e-G⁰/RT=0.037=1/pH₂O pH₂O=27.027 atm 反應不會發生

K=e-G⁰/RT=18.82=1/pCO₂ pCO₂=0.053 atm

(1)(4) 反應平衡, e-G⁰/RT=0.618=K=pCOpH₂O/pHpCO₂ pCO=pH₂O , and P=1=2(pH+pH₂O)

pH=0.387 atm, pCO=pH₂O= 0.113 atm, P=0.666 atm

Q3: C₍ₛ₎ 投入, (5) C₍ₛ₎ + COg = 2COgG⁰=170700-174.5T

(1)(4)(5) all equilibrium, 1.579=e-G⁰/RT=K= pCO²/pCO₂ pCO₂=0.053 atm p”CO=0.289 atm

0.618=K= p”COp”H₂O/p”HpCO₂, p”H+p”H₂O=0.5, p”H=0.449, pH₂O=0.051 P=0.842 atm

Ex-3. NiO₍ₛ₎ + Clg = NiClg₎ + ½Og₎ at T=900K, G⁰=-15490, if 90% Clg₎ consume to produce Og₎ ask P=?

        NiO₍ₛ₎ + Clg = NiClg₎ + ½Og

ini       1          1             0              0

f        1-x       1-x            x             x/2             n =1-x/2

7.905=e-G⁰/RT=K=pO₂½/pCl₂=[(x/2)P/(1-x/2)]½/[(1-x)P/(1-x/2)] 代入x=0.9, =0.393 atm

( 知識學習隨堂筆記 )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=ben168&aid=151057933