網路城邦
上一篇 回創作列表 下一篇   字體:
溶液行為
2020/09/11 15:14:14瀏覽936|回應0|推薦0

ch. 9 solution behavior

*gas mixing(ideal gas): 原子間距離遠,無相互作用力的問題; 100%混合無溶解度的問題

*condensed phase(liquid or solid): strong interaction between atoms, solubility issues in solid: 1. atom size difference in crystal(尺寸影響, Hume-Rothery rule). 2. 鍵結影響: 陰電性(從外抓電子的能力), 價數valence.

§Raoults law & Henrys law

1. pure liquid A: evaporation rate r(A) and condensation rate r(A)=kp

at equilibrium, r(A)=r(A) → r(A)=kp

2. pure liquid B: evaporation rate r(B) and condensation rate r(B)=kp

at equilibrium, r(B)=r(B) → r(B)=kp

3. B+(very small amount A): condensation rate of A r(A)=kp, condensation rate of B r(B)=kp

Assuming a. Eᴀᴀ=Eᴃᴃ=Eᴀᴃ(bonding energy) i.e. Eᵢʲ<0 b. surface composition=bulk composition, c.surface fraction of A=X

evaporation rate of A: r(A)X; as equilibrium, r(A)X=kpr(A)=kp⁰ → Xp⁰=p⸫ Xp⁰=p

X=p/p⁰, X=p/p⁰....Raoults law

4. if Eᴀᴃ is more negative(|Eᴀᴃ|>|Eᴀᴀ| and |Eᴀᴃ|>|Eᴃᴃ|), evaporation rate of A, r(A)<r(A)

r(A)X=kp同除以r(A)=kp⁰ → r(A)X/r(A)=kp/kp⁰ → [r(A)/r(A)]X=p/p

γX=p/p⁰ (γ<1) *γis constant, independent of X(與成分無關)...Henrys law

p/p⁰=γX, p/p⁰=γX

§activity of a component in solution: aᵢ≡fᵢ/fᵢ⁰, if vapor as ideal gas, fᵢ=pᵢ ⸫ aᵢ≡pᵢ/pᵢ⁰

solution: (aᵢ/Xᵢ)≡γᵢ activity coeff.

Raoults law: aᵢ=Xᵢ (or γᵢ=1)

Henrys law: 1. aᵢ=γᵢXᵢ, γᵢ≠1 2. γᵢ independent of Xᵢ(有限範圍內有效,若超過臨界值,A原子周圍就不再都是B原子,與成分有關)

§Gibbs-Duhem eq.

Q=Q(T,P,nᵢ,nʲ,nₖ,....) in a solution composed of (nᵢ,nʲ,nₖ,....)

dQ=(∂Q∕∂T),ᵢ,...dT+(∂Q∕∂P),ᵢ,...dP+(∂Q∕∂nᵢ),,ʲ,...dnᵢ+...

at fixed T,P dQ=Qᵢdnᵢ+Qʲdnʲ+Qₖdnₖ+...

Q=nᵢQᵢ+nʲQʲ+nₖQₖ+... → dQ=Qᵢdnᵢ+Qʲdnʲ+Qₖdnₖ+...+(nᵢdQᵢ+nʲdQʲ+nₖdQₖ+...)

nᵢdQᵢ=0, ∑XᵢdQᵢ=0...Gibbs-Duhem eq.

§Gibbs free energy of binary solution

1. molar Gibbs free energy (G) ← solution(given)

partial Gibbs free energy G, G ← each component=?

G=XG+XG...(1) dG=GdX+ GdX+XdG+XdG → dG=GdX+ GdX

binary X+X=1, dX=-dX⸫dG=(G- G)dX, G- G=dG/dX...(2)

(2)∙X+(1) → G+X(dG/dX)=(X+X) G G=G+(1-X)(dG/dX) or G=G+(1-X)(dG/dX)

Gᵢ=G+(1-Xᵢ)(dG/dXᵢ) 知其中之一即可求其餘自由能!

e.g. G=aXX, G=? G=aX(1-X)=aX-aX², dG/dX=a-2aX G=aXX+X(a-2aX)= aX-aXX=aX(1-X)=a(1-X

fixed T,P G=G(X,X)=G(X)=a+bX+cX²+...

2. ∆G, ∆G, ∆G i: component

1 mole i(pᵢ⁰) → mixed into solution(pᵢ), ∆G=Gᵢ₍ₛₒₗ₎-Gᵢ₍ₚᵤᵣₑ₎=RTln(pᵢ/pᵢ⁰)=RTlna

note: Gᵢ₍ₛₒₗ₎=Gᵢ, Gᵢ₍ₚᵤᵣₑ₎=Gᵢ⁰, ⸫∆Gᵢ=G=Gᵢ-Gᵢ⁰=RTlna

A: n and B: n mixing at (T,P), 混合前: Gᵇᵉᶠ=nG⁰+nG⁰, 混合後: Gₜ=nG+nG

⸫∆G=Gₜ-Gᵇᵉᶠ= n(G-G⁰)+n(G-G⁰)=nG+nG=nRTlna+nRTlna=RT(nlna+nlna)

G=RT(Xlna+Xlna) 除以n+n成為molar Gibbs free energy.

or 直接寫 G=XRTlna+XRTlna

3. 圖解 Gᵢ(G,G), ∆G(G,G) given: ∆G curve, ask ∆G=?, G=?

Given G₍ₛₒₗ₎, curve, ask G=?, G=?

§properties of ideal solution

ideal solution: Eᴀᴀ=Eᴃᴃ=Eᴀᴃ(same bonding energy), aᵢ=Xᵢ (or γᵢ=1)

⸪∆Gᵢ=RTlnaᵢ ⸫∆Gᵢ=RTlnXᵢ ask ∆G=?, ∆H=? ∆S=?, ∆V=? ideal das 混合結果相同

G=RT∑XlnXᵢ, ∆S=- R∑XlnXᵢ, ∆H=0, ∆V=0

V=∑XVGVdG=-SdT+VdP+μᵢdnᵢ at fixed T, (G∕∂P),ₒₘₚ=V (ideal gas)

沿用至ideal solution, 混合後: Vᵢ=(G∕∂P),ₒₘₚ, 混合前: Vᵢ⁰=(Gᵢ⁰∕∂P)

Vᵢ=Vᵢ-Vᵢ⁰=[(Gᵢ-Gᵢ⁰)∕∂P],ₒₘₚ=[(RTlnXᵢ)∕∂P],ₒₘₚ=0, Vᵢ=Vᵢ⁰ V=0

H=∑XHGHGibbs-Hlemholtz eq. 混合後: [∂(Gᵢ/T)∕∂T],ₒₘₚ=-Hᵢ/T², 混合前: [∂(Gᵢ⁰/T)∕∂T],ₒₘₚ=-Hᵢ⁰/T² , ⸪(Gᵢ-Gᵢ⁰)/T=RlnXᵢ, ⸫∆Hᵢ=0

H=0

S=? ∆G=∑XG=RT∑XlnXᵢ, ∆G=∆H-TS, ∆S=-∆G/T=-R∑XlnXᵢ

GS→ -(G∕∂T),ₒₘₚ=S → -(∂∆Gᵢ∕∂T),ₒₘₚ=∆Sᵢ=-RlnXᵢ, ∆S=∑XSᵢ=-R∑XlnXᵢ

binary solution為例,n mole An mole B 混合, 混合前entropy=S, 混合後entropy=S

S=S-S⁰=klnΩ-klnΩ⁰=kln[(n+n)!/(n!n!)]-kln(n!/n!∙n!/n!)

i.e. 統計熱力 S≡klnΩ, stirling approx. LnN!≈NlnN-N

→ ∆S=k[(n+n)ln(n+n)-(n+n)-nlnn+n-nlnn+n] ″configuration entropy″

=-k{nln[n/(n+n)]+nln[n/(n+n)]}=-k[nlnX+nlnX]=-k(n+n)[XlnX+XlnX]

=-k∙N∙n(XlnX+XlnX)=-R∙n(XlnX+XlnX) S=-R(XlnX+XlnX), ⸫∆S=-R∑XlnXᵢ

e.g. Vacancy or impurity, 從自由能看平衡濃度, G=∆H-TS, 焓視為形成空位所必需的能量,另一方面空位加入晶格中(如二元溶液混合)造成亂度增加,最後G=0達到平衡

equilibrium NV =NeQ/ᴿᵀ, k=-1.3810⁻²³ J/K Boltzmanns constant

i.e. N: total # of atomic site, Qv: energy required for the formation of a vacancy.

§non-ideal solution, γᵢ≡aᵢ/Xᵢ, γᵢ≠1(γᵢ>1 or γᵢ<1) → γᵢ=f(Xᵢ,T)

⸪∆Gᵢ=RTlnaᵢ=RTlnXᵢ+RTlnγᵢ → Hᵢ≠0

Gᵢ=RTlnaᵢ → Hᵢ [∂(Gᵢ/T)∕∂T],ₒₘₚ=-Hᵢ/T²[∂(Rlnγᵢ)∕∂T],ₒₘₚ=-Hᵢ/T²[∂(Rlnγᵢ)∕∂(1/T)],ₒₘₚ=-H

notes: case #1. γᵢf(T), independent of T. Hᵢ=0

case #2. in general, γᵢ=f(T)

e.g. If γ>1 in binary solution, γ≡[rₑ(A)/rₑ(A)]表示|Eᴀᴃ|<|Eᴀᴀ|, A-B bonding比較弱,solute A容易蒸發; 另外任何溶液溫度升高,亂度加大,使 γᵢ→1, ⸫dγᵢ/dT<0, dlnγᵢ/dT<0.

Case #3. If γᵢ>1, 溫度升高使 γᵢ→1, ⸫dγᵢ/dT<0, dlnγᵢ/dT<0 → ∆Hᵢ>0 endothermic reaction, |Eᴀᴃ|<|Eᴀᴀ|, clustering

case #4. If γᵢ<1, 溫度升高使 γᵢ→1, ⸫dγᵢ/dT>0, dlnγᵢ/dT>0 → ∆Hᵢ<0 exothermic reaction, |Eᴀᴃ|>|Eᴀᴀ|, ordering to form compound.

§application of Gibbs-Duhem eq.

1. given a(X) → calculate a(X) 2. if solute follows Henrys law, solvent would follows Raoults law. The same result in the opposite way. 3. given a(X) → calculate ∆G=?

XᵢdQᵢ=0...Gibbs-Duhem eq. ⸫∑XᵢdGᵢ=0 → RT∑Xᵢdlnaᵢ=0

binary solution, Xdlna+Xdlna=0 → dlna=-(X/X)dlna,

Xdlna+Xdlna=0 → XdlnX+Xdlnγ+XdlnX+Xdlnγ=0

XdlnX+XdlnX=X(dX/X)+X(dX/X)=dX+dX=0,

Xdlnγ+Xdlnγ=0 → dlnγ=-(X/X)dlnγ

define: α function, αᵢ≡lnγᵢ/(1-Xᵢ)²

when X→1 or X→0 ⸫γ→1, lnγ=0; 1-X→0, α=lnγ/(1-X)²→finite value

lnγ= -XXα-X=1αdX...(M3)

pf: α=lnγ/(1-X)² → lnγ= αX² → dlnγ=2αXdX+X²dα 代入dlnγ=-(X/X)dlnγ式中,

dlnγ=-(X/X)∙(2αXdX+X²dα)=-2αXdX-XXdα

d(αXX)=XXdα+αXdX+α XdX 移項代入上式

dlnγ=-2αXdX-d(αXX)+αXdX+α XdX=-d(αXX)-α (XdX-XdX) ⸪ dX=-dX

dlnγ=-d(αXX)-αdX積分即得

3. 已知a, ∆G=RTlna, G=?

⸪ ∆G=∆G+(1-X)∙(d∆G/dX) → ∆GdX=∆GdX+(1-X)d∆G → ∆GdX=-∆GdX+Xd∆G

除以X² → ∆GdX/X²=(-∆GdX+Xd∆G)/X²=d(∆G/X) →積分

Ex. Fe-Ni, a; Fe-Cu, aᴄᵤ

2. solute B follows Henrys law, solvent A will follow Raoults law.

γ⁰=constant, pf: ⸪a=Xγ⁰, ⸫lna=lnX+lnγ⁰ → dlna=dlnX ; G-D eq. dlna=-(X/X)dlna

dlna=-(X/X)dlnX=-(X/X)∙(dX/X)=-dX/X=dX/X=dlnX積分 dlna=∫dlnX

lna=lnX , a=X 反向也可證明

§Regular solution

*ideal: aᵢ=Xᵢ or γᵢ=1, ∆Hᵢ=0, Sᵢ=-RlnXᵢ, ∆Gᵢ=RTlnXᵢ

*non-ideal: γᵢ≠1 and γᵢ≠const. γᵢ=f(Xᵢ,T) → Hᵢ=-T²[∂(Rlnγᵢ)∕∂T],ₒₘₚ≠0=f(Xᵢ,T) 太複雜了!

找一個simplest function of H→ Regular solution!

Define „regular solution” in mathematic form: 1. ∆Sᵢ=∆Sid =-RlnXᵢ, 2. ∆Hᵢ=f(Xᵢ) only! Indep. of T.

H=∑Xᵢ∆Hᵢ=f"(Xᵢ), 特性: X→0, X→1 or X→1, X→0, H→0

⸫∆H=XX(α+bX+cX²+...), simplest form: ∆H=XXα

H=?, ∆H=? ∆Hᵢ=H+(1-Xᵢ)(d∆H/dXᵢ), ∆H=αX(1-X)=αX-αX²

⸫∆H=XXα+(1-X)(α-2αX)=XXα+X(α-2αX)=αX-αXX=αX(1-X)=αX²

H=α(1-X)², ∆H=α(1-X, ∆G=∆H-TS=RTlna=RTlnX+RTlnγ=RTlnγ-T(-RlnX)

⸫∆H=RTlnγ 前面define: α function, αᵢ≡lnγᵢ/(1-Xᵢ)² α=lnγ/(1-X

α=lnγ/(1-X)²=1/(1-X)²∙[α(1-X/RT]=α/RT H=α(1-X)²=RTlnγ 同時α= α/RT=α=α

α=αRT 物理意義?

§Excess quantity, „XS” Sₓₛ, Hₓₛ, Gₓₛ

Gᵢ=RTlnaᵢ=RTlnXᵢ+RTlnγᵢ=Gid+Gₓₛ,

G=∑XGᵢ=∆H-TS ⸫∆Gₓₛ=∆G-Gᴹ,id=(∆H-Hᴹ,id)-T(∆S-Sᴹ,id) ⸪∆Hᴹ,id=0, ∆S=Sᴹ,id

→∆Gₓₛ=∆H, ∆Gₓₛ=RT(Xlnγ+Xlnγ)=∆H, ∆Gₓₛ= RT∑ Xᵢlnγ

Regular solution: α=α=α, lnγ=α(1-X)², lnγ=α(1-X代入上式Gₓₛ

⸫∆Gₓₛ=∆H=RXX=αXX indep. of T.

Sₓₛ=0, ∆Sₓₛ=-(∂∆Gₓₛ∕∂T),ₒₘₚ=0

*At a fixed composition, Gₓₛ=RTlnγRTlnγᴀ₁=RTlnγᴀ₂lnγᴀ₁/lnγᴀ₂=T₂/T

Summary for simplest regular solution:

Sₓₛ=0, ∆Hₓₛ=RTlnγᵢ, Gₓₛ=RTlnγᵢ

1. ∆Gₓₛ=∆H=RXX=αXX 2. ∆Gₓₛ=∆Hₓₛ=RTlnγᵢ 3. ∆Sₓₛ=0, ∆Sₓₛ=0, ∆Sᵢ=∆Sid =-RlnXᵢ 4. α=α=α=α/RT

實例判斷:

1. if ∆H=bXX, ∆Gₓₛ=bXX, bb→ ∆Gₓₛ≠∆H non-regular!

e.g. Au-Cu at 1550K, ∆Gₓₛ=-24060XAuXCu and ∆Hnon-symmetric → non-regular!

Au-Ag at 1350K, ∆H=-20590XAuXAg and ∆Gₓₛ non-symmetric → non-regular!

2. T=800K,

§9-11 sub-regular solution

Gₓₛ=∆H=XX(α+bX)≠f(T), e.g. Au-Ag at 1350K, ∆Gₓₛ=∆H=XX(α+bX), α=-11320J, b=1940J

*non-regular: ∆Gₓₛ=(a+bX)XX∙(1-T/τ)=f(T), ∆Sₓₛ=-(∂∆Gₓₛ∕∂T),ₒₘₚ=1/τ(a+bX)XX≠0

H=∆Hₓₛ=∆Gₓₛ+TSₓₛ=(a+bX)XX→ ∆Gₓₛ≠∆H non-regular!

§Quasi-chemical model of solution, 以統計方法解釋α的物理意義

e.g. Binary solution, A+B, N atoms and N atoms(N+N=N=6.02∙10²³)

考慮 H=∆U+PV, assume ∆V=0, ⸪V⁰=V=V= V⁰; ∆H=∆U=∆E (鍵結能變化)

鍵結能, E=ꝑᴀᴀEᴀᴀ+ꝑᴃᴃEᴃᴃ+ꝑᴀᴃEᴀᴃ, i.e. Eᵢʲ: bonding energy of i-j, ʲ: # of i-j bonds

假設A原子的配位數為Z, N原子的鍵結數可表示成: N∙Z=2ᴀᴀ+ᴀᴃᴀᴀ=½(N∙Z-ᴀᴃ), 同理

B原子的配位數設為Z, N原子的鍵結數可表示成: N∙Z=2ᴃᴃ+ᴃᴀᴃᴃ=½(N∙Z-ᴃᴀ)

代入鍵結能式中, E= ½N∙ZEᴀᴀ+½N∙ZEᴃᴃ+ꝑᴀᴃ[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)]

Pure A: N∙Z=2ᴀᴀ, E⁰=ᴀᴀEᴀᴀ= ½N∙ZEᴀᴀ; Pure B: N∙Z=2ᴃᴃ, E⁰=ᴃᴃEᴃᴃ=½N∙ZEᴃᴃ

E=E-(E⁰+E)=ꝑᴀᴃ[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] Assume Z=Z=Z, ᴀᴃ=?

在計算ᴀᴃ之前, ⸪regular solution的定義: Sᵢ=∆Sid =-RlnXᵢ, 表示溶液處於complete random的條件下, 原子間鍵結沒有偏好換言之,某一固定溫度的熱能足以彌補原子間鍵結能的差異,還是處於complete random. 例如: Arrehnius eq. D=D₀e⁻q/= D₀e⁻Q/ᴿ 視為粒子的活化能qkT做比較或Q與平均熱能RT比較,得到的平衡量。因此|H|RT視為溶液處於complete random

H≈∆E=ꝑᴀᴃ[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] 考慮A-B鍵數, 相鄰位置A-B配對的機率: ᴀᴃ=2XX

total # of bond=½N₀∙Z, ⸫ ᴀᴃN₀∙Zℓᴀᴃ =N₀∙ZXX

H=XXN₀Z[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] compare with regular H=XXα

let Ω≡N₀Z[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] 鍵結能差異 Ω=α=R

H=ΩXX=∆Gₓₛ, ∆Hᵢ=? H=Ω(1-X)², ∆H=Ω(1-X)², ∆S=-RlnX, ∆S=-RlnX

G=∆H-TS=Ω(1-X)²-T(-RlnX) vs. ∆G=RTlna=RTlnX+RTlnγ

RTlnγ=Ω(1-X lnγ=(Ω/RT)∙(1-Xᵢ)²

notes: 1. if Ω=0, Eᴀᴃ=½(Eᴀᴀ+Eᴃᴃ) γ=1 ideal solution

2. if Ω<0, ∆H<0 exothermic, ⸪Eᵢʲ<0 ⸫ |Eᴀᴃ|>½|Eᴀᴀ+Eᴃᴃ| γ<1 negative deviation

3. if Ω>0, ∆H>0 endothermic, ⸪Eᵢʲ<0 ⸫ |Eᴀᴃ|<½|Eᴀᴀ+Eᴃᴃ| γᵢ>1 positive deviation

4. Henrys law: aᵢ=γᵢ⁰Xᵢ, as Xᵢ→0 γᵢ⁰=constant=eΩ/ᴿ

5. regular solution重要條件需要complete random, when |Eᴀᴃ|>>½|Eᴀᴀ+Eᴃᴃ| |Ω|鍵結能差異很大,會破壞complete random, 不適合用regular solution 模擬

6. equilibrium „configuration” of solution at fixed T, P

Equlibrium means Gₘᵢₙ, ∆G=∆H-TS

regular: ∆H=ꝑᴀᴃ[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)], ꝑᴀᴃ=(½N₀∙Z)∙ℓᴀᴃ ᴀᴃ: probability of A-B bond ⸫∆H=½ℓᴀᴃ Ω

1. fixed T, |Ω|增加,Gₘᵢₙ會向ordering移動. 2. fixed Ω, 溫度增加,Gₘᵢₙ會向random移動.

Ex-1. Cu-Au solid solution at 873K, regular: Gₓₛ,=-28280XAuXCu J/mole.

Given: pure lnpCu⁰=-40920/T-0.86lnT+21.67 pure lnpAu⁰=-45650/T-0.306lnT+10.81

ask pAu=? pCu=? at Xcu=0.6

aCu=fCu/fCu⁰=pCu/pCu⁰, aAu=pAu/pAu⁰; aᵢ=γᵢXᵢ=pᵢ/pᵢ⁰ and lnγ=(Ω/RT)∙(1-Xᵢ)², 先求γAu, γCu即可得 aCu, aAu

αᵢ≡lnγᵢ/(1-Xᵢ)²=Ω/RT, α=α=α=α/RT

Ex-2. Ga-Cd liquid solution at 700K, regular: XGa=0.5, aGa=0.79. Ask Ega-Cd=?

Given: ΔHₑᵥₐₚ,Ga=270000J, ΔHₑᵥₐₚ,Cd=100000J, ZGa=11, ZCd=8

Ω≡N₀Z[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] let A=Ga, B=Cd; ΔHₑᵥₐₚ,iN₀∙ZEᵢᵢ → Eᴀᴀ, Eᴃᴃ

EGa-Ga=-8.15∙10⁻²⁰J, ECd-Cd=-4.15∙10⁻²⁰J

lnγ=(Ω/RT)∙(1-Xᵢ)² γ求出Ω, 代入Ω定義式中求EGa-Cd

γGa=aGa/XGa=1.39 → lnγGa=(Ω/RT)∙(1-XGa)² ⸫Ω=10745J Assume Z=½(ZCd+ZGa)=9.5

Ega-Cd=-5.96∙10⁻²⁰J

( 知識學習隨堂筆記 )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=ben168&aid=150543575