Let a, b, c be three edges of a triangle, D be the triangle's 面積.
Let r be 內心半徑,a = y + z,b = z + x, c = x + y,and s = x+y+z。
Then, abc = (y + z)(z + x)(x + y) >= 8xyz = 8(s-a)(s-b)(s-c). (算術平均>=幾何平均)
We have sabc >= 8s(s-a)(s-b)(s-c), which implies R = abc/(4D) = 2D/s = r.
請問:如何證明 R = (abc)/4D?