字體:小 中 大 | |
|
|
2017/11/04 20:16:00瀏覽365|回應0|推薦0 | |
簡介特殊的質數序列及孿生質數的存在性
歷經了六至七年的嘗試與探索,以及數十百次的驚喜與挫敗. 我終於找到了一個特殊的質數序列 A1=59,A2=1019, A3=262139,A4=17179869179,…. A1=59,A2=1019 為質數很容易證明.至於 A3=262139 是否為質數, 即使是使用電腦一一測試,仍然是很繁, 但要證明 A4=17179869179,…,An為質數,n 為任何正整數, 卻非既往的方法所能奏效.想要知道 An 的通式, 必先證明下列的各個問題. 令 s(n)=2n.®s(1)=2,s(2)=4,s(3)=8, s(4)=16,s(5)=32,… I . r³2,n³3:當2£r£2n-1-1時,1£2h-1£2r-1£2s(n-1)-1; 當r=2n-1時,1£2h-1£2s(n-1)-3.k,h為正整數.試證 k[2s(n)+1-2s(n-1)+1-2r+1(2h-1)+1] ¹[2s(n-1)-1+2r-1(2h-1)]2-3[2s(n-1)-2+2r-2(2h-1)] +2s(n)-1. 一.n=3:當2£r£22-1時,1£2h-1£2r-1£23-1£7; 當r=22時,1£2h-1£24-3£13.試證 k[2s(3)+1-2s(2)+1-2r+1(2h-1)+1] ¹[2s(2)-1+2r-1(2h-1)]2-3[2s(2)-2+2r-2(2h-1)] +2s(3)-1. 二.n=4:當2£r£23-1時,1£2h-1£2r-1£27-1£127; 當r=23時,1£2h-1£2s(3)-3£28-3£253.試證 k[2s(4)+1-2s(3)+1-2r+1(2h-1)+1] ¹[2s(3)-1+2r-1(2h-1)]2-3[2s(3)-2+2r-2(2h-1)] +2s(4)-1. 三.n=5:當2£r£24-1時,1£2h-1£2r-1£215-1; 當r=24時,1£2h-1£216-3.試證 k[2s(5)+1-2s(4)+1-2r+1(2h-1)+1] ¹[2s(4)-1+2r-1(2h-1)]2-3[2s(4)-2+2r-2(2h-1)] +2s(5)-1. 四.r³2,n³6: 當2£r£2n-1-1時,1£2h-1£2r-1£2s(n-1)-1; 當r=2n-1時,1£2h-1£2s(n-1)-3. 則由本人首創之質數的關鍵定理.可得證 k[2s(n)+1-2s(n-1)+1-2r+1(2h-1)+1] ¹[2s(n-1)-1+2r-1(2h-1)]2-3[2s(n-1)-2+2r-2(2h-1)] +2s(n)-1. II . r³2,n³3: 當2£r£2n-1時,1£2h-1£2r-1.k,h為正整數.試證 k{2[2s(n)+1]-4[2s(n-1)-1+2r-1(2h-1)]+1} ¹[2s(n-1)-1+2r-1(2h-1)]2-[2s(n-1)-1+2r-1(2h-1)] -3[2s(n-1)-2+2r-2(2h-1)]+2s(n)-1+1. 一.n=3:當2£r£22時,1£2h-1£2r-1£24-1£15. 試證 k[29-25-2r+1(2h-1)+3] ¹[23+2r-1(2h-1)]2-[23+2r-1(2h-1)] -3[22+2r-2(2h-1)]+27+1. 二.n=4:當2£r£23時,1£2h-1£2r-1£28-1. 試證 k[217-29-2r+1(2h-1)+3] ¹[27+2r-1(2h-1)]2-[27+2r-1(2h-1)] -3[26+2r-2(2h-1)]+215+1. 三.n=5:當2£r£24時,1£2h-1£2r-1£216-1. 試證 k[233-217-2r+1(2h-1)+3] ¹[215+2r-1(2h-1)]2-[215+2r-1(2h-1)] -3[214+2r-2(2h-1)]+231+1. 四.r³2,n³6:當2£r£2n-1時,1£2h-1£2r-1£2s(n-1)-1. 則由本人創設之質數的關鍵定理.可得證 k[2s(n)+1-2s(n-1)+1+2r+1(2h-1)+3] ¹[2s(n-1)-1+2r-1(2h-1)]2-[2s(n-1)-1+2r-1(2h-1)] -3[2s(n-1)-2+2r-2(2h-1)]+2s(n)-1+1. 根據網路報導目前已知最大的孿生質數為 3,756,801,695,685 x 2^666,669 -1和 + 1. 因令 a 為目前已知最大的質數. 則 a³3,756,801,695,685 x 2^666,669 +1, b=2a,c=2b.顯然 c 比 a 大太多了. 則可知 4c-x為質數,x 為一確定的正奇數. 再令 d=2c,e=2d.則可知 4e-x 為質數, x 為一確定的正奇數.如果 4c-x 十進位的長度可繞地球一圈, 那麼 4e-x 十進位的長度有可能繞太陽十圈. 如此依次進行,轉眼間 便可找到十進位長度繞銀河系千圈萬圈的質數, 又何須千年萬年! 孿生質數與廣義的孿生質數. 令 t(n)為正整數集合之子集. 若A*t(n)=At(n)+2為質數.則At(n),A*t(n)為孿生質數. 同理:若A*s(n)=As(n)±2t為質數.t為整數,t>1. 則稱At(n),A*t(n)為廣義的孿生質數. 這是一篇雖長猶短的論文摘要,全文I . II .兩部分長達215頁. 但比起那歷經兩千五百多年歷史才找到目前最大的質數要簡捷得多. 無論目前最大的質數 a有多大,但由於 a<b=2a<c=2b, 顯然質數 4c-x 比質數 a 大太多了. 曾記得幾年前,我在家鄉講演數學.一位郴州的小女生對我說: 爺爺,你那麼優秀,為什麼不去美國?我回答說: 比我優秀的的中國人太多了,他們為什麼不去美國.來來來, 來台大;去去去,去美國.這樣的順口溜,似乎是理所當然. 但我相信在不久的將來,美國的學生會說:來來來,來哈佛; 去去去,去中國.英國的學生會說:來來來,來牛津,去去去, 去北大,去清華,去復旦,去台大,去港大. 不正是世界華人共同的中國夢嗎?在中國的兩岸三地, 好的大學越來越多.掀起華夏數學熱,舉世矚目中國人. 又何必以洋為尊.自甘卑下.
|
|
( 心情隨筆|心情日記 ) |