網路城邦
上一篇 回創作列表 下一篇   字體:
板上問倒大家的問題?
2010/05/23 20:30:56瀏覽483|回應2|推薦2

Q:

a, b, c為正整數且滿足

(2^a - 1)(3^b - 1) = c!

試求出所有可能的a, b, c

-----------------------------------------------------

我也不會解.....

猜測只有四組,不過不知道要怎樣證明c>5時沒有解

感覺會用到同餘式

( 知識學習科學百科 )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=ivan5chess&aid=4059647

 回應文章


2010/05/26 00:48

其實我的切入點是由a切入的,原題目為(2^a-1)(3^b-1)=c!,即為將c!作分解,分解成二數相乘,其中前數須為奇數,後數須為偶數,且後數必非3倍數,故2^a-1必為3的倍數(除了我解出的第一組之外),基於這個理由,a必為偶數,故由a=2考慮,這裡須先證明一個引理:若a作質因數分解時有k個3,則2^a-1此數作質因數分解時必有k+1個3.

證明:令a=m*3^k,其中m為偶數,且m非3倍數,故2^a-1=(3-1)^a-1=3^a-C(a,1)*3^(a-1)+...+C(a,2)*3^2-C(a,1)*3,觀察最後一項,恰有k+1個3,其餘所有項皆k+2個3以上,故2^a-1被3^(k+1)整除,但被3^(k+2)無法整除,故2^a-1質因數分解時恰有(k+1)個3.

因此利用該引理,當a=2時,2^2-1=3*t,故此時c僅能為3,4,5(因若c=6以上則有2個3,而3必須全部在前數中,矛盾)逐一檢查可求得解.

同理若a=4,2^4-1=3*t,此時c僅能為3,4,5,逐一檢查可求得解.

a=6時,2^6-1=3^2*t,此時c僅能為6,7,8,我就是利用此法解出第五組的.

當a=8時,2^8-1=3*t,此時c僅能為3,4,5,但2^8-1=255>5!=120,故明顯矛盾無解.

在這種檢查法下,其實下個a僅需觀察a=18時,這是因為此時2^18-1=3^3*t,故c此時無解(因為c=9以上時都有4個3以上)

再觀察a=54=2*3^3,此時2^54-1=3^4*t,故c僅能為9,10,11,但2^54-1遠大於11!,明顯無解.

下個a即為2*3^4=162,此時2^162-1=3^5*t,而c遞增之速度卻僅為等差,即c=12,13,14,但2^162-1比上個數2^54-1之遞增速度為"次方等比",2^162-1>>14!,明顯無解.

這種找法之下明顯可看出c>7已後保證無解,而且我認為此題就算修改成(3^a-1)(5^b-1)=c!亦可用此法求出其有限組解,本來我昨天想企圖証出2^a-1遠大於c!說,不過越看越覺得明顯成立,索性就不證了!!@@

對了,另外那題三數之最小公倍數為400那題啊,除了列出討論外,我似乎找不出較為有系統的作法溜,還是你有系統化作法啊??

都都(ivan5chess) 於 2010-05-26 20:00 回覆:

噢噢又有很神奇的引理XDDDD

原來是從a切入!!!  我覺得降說明應該也很清楚了~不一定要完整證明吧?

 

最小公倍數那題我再PO!

後來想想,它應該也算是高中比較進階的題目而已吧! 應該算是滿系統的解法了



2010/05/25 00:41
我作出五組耶:(a,b,c)=(1,1,2),(2,1,3),(2,2,4),(4,2,5),(6,4,7),而且我猜測c>7後無解,其實我的找法似乎可以看出明顯成立,但嚴格證明還得要想想,我的找法較為特殊,得在嘗試證明出來才行!!
都都(ivan5chess) 於 2010-05-25 10:11 回覆:

噢噢我沒有注意到有(6,4,7)耶@@

彬哥的方法一直都很特殊 XDDDDD