昨晚下課候,我閒來無事,看起一本書,裡頭提到了奇完美數.
我便開始研究了起來,結果發現一個有趣的定理.
奇完美數若存在,他的標準分解式,必然是這樣的形式
底數都是奇質數,指數恰好只有一個奇數次方,其餘都是偶數次方.
更深入研究後,發現一個引理,可以把這形式定的更精細點
奇完美數若存在,他的標準分解式,必然是質數╳完全平方數
本來我以為這是個獨特的發現,上網一查.
原來笛卡兒早在1638年就發現了,而且他跟我一樣.
一度認為這個發現,是有幫助的.我覺得好像有,但是要證明.
確實是要a great deal of time![](http://blog.udn.com/htmlarea/emoticons/e-9.gif)
在1638年,Descartes曾寫信給Mersenne,寫著─
Descartes, in a letter to Mersenne in 1638, wrote :-
... I think I am able to prove that there are no even numbers which are perfect apart from those of Euclid; and that there are no odd perfect numbers, unless they are composed of a single prime number, multiplied by a square whose root is composed of several other prime number. But I can see nothing which would prevent one from finding numbers of this sort. For example, if 22021 were prime, in multiplying it by 9018009 which is a square whose root is composed of the prime numbers 3, 7, 11, 13, one would have 198585576189, which would be a perfect number. But, whatever method one might use, it would require a great deal of time to look for these numbers...
我想我可以由歐幾里得的公式證明,沒有不是偶數的完美數;但奇數的完美數必是,某一質數乘以一完全平方數,且其平方根為質數的合成。如22021是質數,9018009的平方根是由質數3,7,11,13的合成,所以22021*9018009=198585576189是完美數。…………………
問題:笛卡兒舉的例子乍看之下是合理的,其實是有問題的.
那這個例子的錯誤在哪邊呢?