網路城邦
上一篇 回創作列表 下一篇  字體:
量子力學的革命(二)---- 維基百科
2023/10/28 21:21:00瀏覽316|回應0|推薦0

◎「波」和「粒子」的歷史關係

在十九世紀後期,日臻成熟的原子論逐漸盛行,根據原子理論的看法,物質都是由微小的粒子——原子構成,例如,約瑟夫·湯姆森陰極射線實驗證實,電流是由被稱為電子的粒子所組成。在那時,物理學者認為大多數的物質是由粒子所組成。與此同時,波動論已經被相當深入地研究,包括干涉和繞射等現象。由於光波在楊氏雙縫實驗、夫朗和斐繞射實驗中所展現出的特性,明顯地說明它是一種波動。不過在二十世紀來臨之時,這些觀點面臨了一些挑戰。1905年,阿爾伯特·愛因斯坦對於光電效應用光子的概念來解釋,物理學者開始意識到光波具有波動和粒子的雙重性質。1924年,路易·德布羅意提出「物質波」假說,他主張,「一切物質」都具有波粒二象性,即具有波動和粒子的雙重性質。根據德布羅意假說,電子是應該會具有干涉和繞射等波動現象。1927年,柯林頓·戴維森與雷斯特·革末設計與完成的戴維森-革末實驗成功證實了德布羅意假說。

◎17世紀:惠更斯、牛頓

較為完全的光理論最早是由克里斯蒂安·惠更斯發展成型,他提出了一種光波動說。使用這理論,他能夠解釋光波如何因相互干涉而形成波前,在波前的每一點可以認為是產生球面次波的點波源,而以後任何時刻的波前則可看作是這些次波的包絡。從他的原理,可以給出波的直線傳播與球面傳播的定性解釋,並且推導出反射定律與折射定律,但是他並不能解釋,為什麼當光波遇到邊緣、孔徑或狹縫時,會偏離直線傳播,即繞射效應。惠更斯假定次波只會朝前方傳播,而不會朝後方傳播。他並沒有解釋為什麼會發生這種物理行為。稍後,艾薩克·牛頓提出了光微粒說。他認為光是由非常奧妙的微粒組成,遵守運動定律。這可以合理解釋光的直線移動和反射性質。但是,對於光的折射與繞射性質,牛頓的解釋並不很令人滿意,他遭遇到較大的困難。 由於牛頓無與倫比的學術地位,他的粒子理論在一個多世紀內無人敢於挑戰,而惠更斯的理論則漸漸為人淡忘。直到19世紀初繞射現象被發現,光的波動理論才重新得到承認。而光的波動性與粒子性的爭論從未平息。 在後來的18世紀,認可波動學說的知名科學家裡有萊昂哈德·歐拉。但他們只是認可波動說的理論自洽性,並不偏袒微粒學說和波動學說的任何一方。歐拉以振動持續時間的不同來解釋不同的顏色機理。歐拉也有自己的色散理論,但是經過英國光學儀器商焦恩·多朗德的反覆試驗,表明歐拉和牛頓的理論都有瑕疵。

◎19世紀:楊、費涅爾、馬克士威、赫茲

十九世紀早期,托馬斯·楊和奧古斯丁·菲涅耳分別做出重大貢獻。托馬斯·楊完成的雙縫實驗顯示出,繞射光波遵守疊加原理,這是牛頓的光微粒說無法預測的一種波動行為。這實驗確切地證實了光的波動性質。奧古斯丁·菲涅耳提出惠更斯-菲涅耳原理,在惠金斯原理的基礎上假定次波與次波之間會彼此發生干涉,又假定次波的波幅與方向有關。惠更斯-菲涅耳原理能夠解釋光波的朝前方傳播與繞射現象。光波動說並沒有立刻取代光微粒說。但是,到了十九世紀中期,光波動說開始主導科學思潮,因為它能夠說明偏振現象的機制,這是光微粒說所不能夠的。 同世紀後期,詹姆斯·馬克士威將電磁學的理論加以整合,提出馬克士威方程組。這方程組能夠分析電磁學的種種現象。從這方程組,他推導出電磁波方程式。應用電磁波方程式計算獲得的電磁波波速等於做實驗測量到的光波速度。馬克士威於是猜測光波就是電磁波。電磁學和光學因此聯結成統一理論。1888年,海因里希·赫茲做實驗發射並接收到馬克士威預言的電磁波,證實馬克士威的猜測正確無誤。從這時,光波動說開始被廣泛認可。

◎普朗克黑體輻射定律

1901年,馬克斯·普朗克發表了一份研究報告,他對於黑體在平衡狀況的發射光波頻譜的預測,完全符合實驗數據。在這份報告裏,他做出特別數學假說,將諧振子(組成黑體牆壁表面的原子)所發射或吸收的電磁輻射能量加以量子化,他稱呼這種離散能量為量子,與輻射頻率有極大關連 。這就是著名的普朗克關係式。從普朗克的假說,普朗克推導出一條黑體能量分佈定律,稱為普朗克黑體輻射定律。

◎愛因斯坦與光子

光電效應指的是,照射光束於金屬表面會使其發射出電子的效應,發射出的電子稱為光電子。為了產生光電效應,光頻率必須超過金屬物質的特徵頻率,稱為其「底限頻率」。舉例而言,照射輻照度很微弱的藍光束於鉀金屬表面,只要頻率大於其底限頻率,就能使其發射出光電子,但是無論輻照度多麼強烈的紅光束,一旦頻率小於鉀金屬的極限頻率,就無法促使其發射出光電子。根據光的波動說,光波的輻照度或波幅對應於所攜帶的能量,因而輻照度很強烈的光束一定能提供更多能量將電子逐出。然而事實與古典理論預期恰巧相反。 1905年,愛因斯坦對於光電效應給出解釋。他將光束描述為一群離散的量子,現稱為光子,而不是連續性波動從普朗克黑體輻射定律,愛因斯坦推論,組成光束的每一個光子所擁有的能量, 假若光子的頻率大於物質的極限頻率,則這光子擁有足夠能量來克服逸出功,使得一個電子逃逸,造成光電效應。愛因斯坦的論述解釋了為甚麼光電子的能量只與頻率有關,而與輻照度無關。雖然藍光的輻照度很微弱,只要頻率足夠高,則會產生一些高能量光子來促使束縛電子逃逸。儘管紅光的輻照度很強烈,由於頻率太低,無法給出任何高能量光子來促使束縛電子逃逸。 1916年,美國物理學者羅伯特·密立根做實驗證實了愛因斯坦關於光電效應的理論。從馬克士威方程組,無法推導出普朗克與愛因斯坦分別提出的這兩個非古典論述。物理學者被迫承認,除了波動性質以外,光也具有粒子性質。

由於光具有波粒二象性,因此可用波動概念來分析光電效應而完全不需用到光子的概念。1969年,威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)應用在原子內部束縛電子的能階躍遷機制證明了這論述。

◎德布羅意與物質波

基於普朗克關係式和愛因斯坦的光電效應理論的成功,1924年,路易·德布羅意在他的博士論文中提出電子除了具有粒子的性質也可以有波動性質,也就是德布羅意假說。他認為,所有物質都擁有類波動屬性,這可以說是對先前愛因斯坦等式的拓展。 三年後,通過兩個獨立的電子繞射實驗,德布羅意的方程式被證實可以用來描述電子的量子行為。在阿伯丁大學,喬治·湯姆森將電子束照射穿過薄金屬片,並且觀察到預測的干涉樣式。在貝爾實驗室,柯林頓·戴維森和雷斯特·革末做實驗將低速電子入射於鎳晶體,取得電子的繞射圖樣,這些實驗結果符合理論預測,表明了電子的確具有波的性質。

( 知識學習隨堂筆記 )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=teddy5422&aid=180018637