網路城邦
上一篇 回創作列表 下一篇  字體:
量子力學的革命(一)---- 維基百科
2023/10/27 20:09:41瀏覽342|回應0|推薦1

◎波耳-愛因斯坦之爭

波耳-愛因斯坦之爭(英語:Bohr–Einstein debates)是阿爾伯特·愛因斯坦尼爾斯·波耳之間關於量子物理的一系列著名的爭論。這兩個人與馬克斯·普朗克被稱為舊量子論的奠基者。他們之間的爭論也因為他們對於物理學的重要性而被載入史冊。愛因斯坦認為,物理學應該能告訴他在公式背後的真實世界發生了什麼。而波耳只對公式本身感興趣而不關心那潛在的現實世界中的事件。愛因斯坦對於量子力學的持續而有力的批評促進了量子力學的發展,它迫使量子力學的支持者們加深了他們對量子力學的科學和哲學意義的理解。

◎革命前的爭論

愛因斯坦是第一個意識到普朗克關於量子的發現將要改寫整個物理學的物理學家。為了證明他的觀點,在1905年,他提出光的行為有時像粒子,他稱這些粒子為「光量子」,現在這個詞被稱為光子但是當時的觀點認為光是一種電磁波。這個假說導致了光同時具有粒子和波的特性。波耳一直是光量子假說的最堅定的反對者之一,直到1925年他才接受這個觀點。波耳後來創造性的成就卻基於一個被他長期反對的觀點,這在科學史中極其少見。愛因斯坦支持光子的觀點是因為他把它看作數字背後的事實(雖然這個事實非常令人困惑)。波耳反對這個觀點是因為它使得科學家必須從兩套數學公式中選擇。 1913年的波耳模型成功的使用量子解釋了原子光譜。愛因斯坦剛開始很懷疑,但很快就接受了它。波耳模型使得現實無法被詳細地描述,但是愛因斯坦容忍了這個缺點,只因為愛因斯坦認為它還沒有完成。確實,這個模型需要電子能夠從一個軌道跳躍到另一個軌道(在獲得能量時遠離原子核而以光子的形式釋放能量時靠近原子核)但並不經過兩個軌道之間的空間。但是這只是一個偉大的開端,時間會洗清這一切,就像時間洗清了光的波動性和粒子性的矛盾。他認為物理學需要一場革命來解決量子的不連續

◎量子力學革命

20世紀20年代的量子力學革命在愛因斯坦和波耳的研究方向上展開了,而革命後愛因斯坦和波耳的爭論也是關於如何理解這些改變。這場革命對愛因斯坦的第一個衝擊是1925年維爾納·海森堡提出了矩陣力學,因此就徹底地廢除了牛頓力學中的古典元素。下一個衝擊是1926年馬克斯·玻恩提出量子力學應該被理解為沒有任何因果聯繫的機率。最後,在1927年年底,海森堡和玻恩在索爾維會議中宣布革命結束,量子力學已經不需要更多東西了。在這最後關頭,愛因斯坦的態度從懷疑變成了沮喪。他相信量子力學已經完成了,但是力學為什麼是這樣的,這仍然需要理解。 愛因斯坦拒絕接受量子力學的革命成果反應出他不能接受不確定性原理:粒子在時空中的位置永遠不能被準確地測量,因為量子不確定性的機率不會產生任何確定的結果。他並不是排斥統計和機率本身,而是因為量子力學的理論缺乏足夠的理由。而波耳當時並沒有被這些問題所困擾,他強調了觀察者的觀察的重要性,提出了互補原理來解決這個矛盾。

◎波粒二象性

波粒二象性(英語:wave–particle duality)指的是以古典力學的觀點來看待非相對論量子力學所描述的微觀粒子的話,微觀粒子會同時顯示出古典上的波動性與粒子性。比如說,古典力學把波函數的位置觀測結果必為明確位置視為「粒子性」;一方面又把機率幅具有的線性疊加性視為「波動性」。波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 古典力學的研究對象總是被明確區分為「純」粒子和「純」波動。前者組成了我們常說的「物質」,後者的典型例子則是光波。但(不含狹義相對論的)量子力學認為自然界的基本粒子,如光子、電子或是質子,都能用薛丁格方程式來描述。這個方程式的解即為波函數,其絕對值平方表示粒子在某一處被發現的機率密度。更一般的來說,波函數是可以直觀視為觀測到粒子為特定位置的機率幅,機率幅具有疊加性,它們就像波,描述不同途徑的機率幅可以用疊加的方式互相干涉。 日常生活中觀察不到物體的"波動性",是因為他們皆質量太大,導致德布羅意波長比可觀察的極限尺寸要小很多,因此可能發生波動性質的尺寸在日常生活經驗範圍之外。這也是為什麼古典力學能夠令人滿意地解釋「自然現象」。反之,對於基本粒子來說,它們的質量和尺寸局限於量子力學所描述的範圍之內,因而與我們所習慣的圖景相差甚遠。

( 知識學習隨堂筆記 )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=teddy5422&aid=180016812