字體:小 中 大 | |
|
|
2009/06/05 15:54:04瀏覽5086|回應2|推薦3 | |
蠻帥的海森堡 狗吉拉閱讀量子史話系列心得整理 ......海森堡的測不準定理 Uncertainty Principle 1927 年 大部份的物理學家看到了薛丁格1926年發表的波函數 加上波耳的有力背書之後 紛紛回到他們感到熟悉舒服的古典領域裡去支持薛丁格 因而離開了那雖然發表在先 但少有人摸得懂的 海森堡對量子現象的純數學矩陣詮釋 (包括 量子宗師 波耳也跑了) 正當海森堡對量子現象的純數學矩陣解釋 被薛丁格的 "波函數詮釋" 打得滿地找牙而氣得臉都歪的時候 (根據史料 這樣說並不誇張喔) 海森堡透過原先解釋氫原子能階現象所發展的矩陣中 計算出了 "位置" 與 "動量"兩個物理量的無限矩陣 他的老闆波恩後來從這個無限矩陣當中 看出了數學上的"對易關係" 存在 於是海森堡抓著 "對易關係" 進一步推導 結果導出了一個 (尚不是很精緻的) 不等式 他愰然領悟到了這個不等式所具有的重大物理意義 (狗伯解 : 對他自己的意義更大 他終於可以一吐鳥氣了) 也就是探索自然界所面臨的極限... 我們永遠 "測不準 或 不確定" 由這個不等式的意義看來... 我們絕對無法做到 比量子所允許的範圍還要更加精確地 同時掌握一個量子的位置和動量 來看一看這是怎麼回事 設定... 測量位置 的誤差 是 ΔX 與 測量動量的誤差 是 ΔP 那麼... ΔXΔP 乘起來 必須要大於一個極小的常數 (普郎克常數 h / 4 pei) 意思是 若ΔX(X誤差)很小 ΔP(P誤差)就必然要很大 反之亦然 設定... 測量能量 的誤差 ΔE 與 測量時間的誤差 Δt 那麼... ΔEΔt乘起來 必須要大於普郎克常數 h (約10的負34次方數量級) 意思是 若ΔE(E誤差)很小 Δt (t誤差)就必然要很大 反之亦然 也就是 在這個宇宙之內 不管我們用什麼手段 不管我們用什麼精密無比到無法想像的儀器去做測量 必然面對...被測物的 ΔX ΔP > h / 4 pei or ΔE Δt > h 翻成白話文就是說... (第一種無奈) : 如果我們能掌握粒子的動量 就無法確知粒子的位置 或是 如果我們能確定粒子的位置 就無法確知粒子的移動速度與方向 (第二種無奈) 如果我們能掌握一段極精確的時間區段(所以會極短) 就無法確知這極短時段內 系統的明確能量值 或是 如果我們能確定系統的明確能量值 就無法讓系統的存在時間 短到極精細的短時段內 為什麼會如此呢? 從量子的粒子性質來看 所謂的"測量" 會干擾到被測的量子的狀態 因為用於測量的任務光子 本身也是個量子 用於觀測的任務光子 為了要得到目標量子的資訊 必須與被測的目標量子發生互動 這一擊 任務光子得到了測量資訊 但目標量子 就從此再也不是被互動前的狀態了 它被撞跑了 所以任務光子身上帶的資訊 根本就不是目標量子的資訊 所以就粒性角度來說 被測的目標物件大小越接近量子尺度(普郎克尺度) 這種被任務光子撞跑了的效應越明顯 從量子的波性質來看 用於觀測的任務光子本身所呈現的機率波 為了要得到目標量子的資訊 同樣必須與被測的目標量子的機率波發生干涉 結果一經測量之下 目標量子的波函數發生改變 再也不能以原來的波函數來描述 因此任務光子所攜帶的測後資訊也形同作廢 (事實上它們兩者被視為同一個系統 疊加出新的波函數了) 喔!!!! 那有什麼意義咧?? 第一個意義是 讓習慣於相信人定勝天的我們很沮喪 因為對這個世界 我們永遠... "測不準 或 不確定" 代表著... 我們再怎麼厲害 也不可能測準或確定 這好像跟我們掌握世界以便活下去的信念相反 第二個意義是 無中居然可以生有 因為我們從第二種無奈中得知 為了要得到明確的能量值 量子態的存在時間必需持續撐過波函數的好幾個週期長度 那麼這個被確認的能量大小 就只能說是一段比較長的時段內的平均能量值 而相反的 若有一個只能短短短短短...短暫存在的量子態 該態的能量值必然無法被明確理解 (從很小到很大都可能) 設想 如果我們能精確的掌握時間的精細準確那一瞬間(Δt 極小) 那麼在這一段短暫瞬間的時刻裡 我們就永遠無法知道其時系統的能量起伏狀況(ΔE 極大) 越是一短瞬 能量就越能夠以很大的起伏差距在系統中出現 只要短瞬能短到一個短短短短短...短的程度(Δt 極小) 能量就可以從看似虛空沒有能量(很小)的系統狀態當中 憑空出現 (在一瞬間其實能量很大) 又再消滅 (下一瞬間能量又成很小) (這叫量子起伏) 中國人管這叫 " 無中生有 " 量子學家管這叫 " 穿隧 " (隔山打牛的意思) 測不準 或 不確定原理的來源 除了可以像海森堡從純數學的推導上看出來以外 其實更可以像波耳一樣 由粒子的波粒性質當中被理解到 測不準現象 根本就是來自於 粒子的波粒二重性本質 產生的 我們對量子不連續的粒子性掌握得越好 粒子連續本質的波性 就會跳出來攪局 搞你個想測都測不準的狀況 量子很狡詐的 永遠在波粒之間擺盪 沮喪歸沮喪 我們還是死了這條心吧 (這句是 狗吉拉勸愛因斯坦老兄 所說的) 波耳大師體會到這一點關於波性的陰魂不散 把這想法跟海森堡一提之下 把海森堡可真的氣哭了 因為海森堡認為 "測不準原理" 是他的純數學矩陣可以扳回頹勢的雪恥之戰 沒想到大師還是把測不準狀況跟波扯在一起 而且氣人的是 好像還一點都沒錯 波耳大師讓我們瞭解到 波與粒 是量子的一體兩面整體概念 量子到底表現出波性或粒性 是由被觀測的手段決定的 它沒有 "本來應該是什麼" 的 "真身" 問題 它只有 "被觀測到是什麼" 的 "表象" 問題 在同一時刻中的觀測表象下 量子只有一種表現型 但在觀測以外時 它是波粒二象的共存 這就是 互補原理 ( principle of complementarity ) 綜合本篇 海森堡的「測不準原理」與 波耳的「互補原理」 加上前篇 薛丁格的「機率波詮釋」 共同構成了 哥本哈根詮釋的主要內容 至此 理解量子世界行為的主流派 「哥本哈根詮釋」 大致底定 補述 在量子力學 位置與動量同時明確的量子態並不存在 這是我們這個宇宙的自然本質 完全與實驗儀器與觀測手法無關 所以 基於這個事實 有人認為大家最好別把此一本質稱為測不準原理 而應該稱它為不確定性原理 |
|
( 知識學習|科學百科 ) |