字體:小 中 大 | |
|
|
2007/02/28 17:49:57瀏覽1819|回應4|推薦2 | |
之所以會想po這個問題...是因為幾個禮拜前數學老師發了一張數學作業 隔天讓大家上台講解答案... 那天早上,大家都在討論那張考卷的題目...我發現大家解決這題都用了相同的方法,但是其實這個方法不是最好的,也比較費時。 但是一般學生,一看到題目大概都會想到用那樣解的吧~ Q: aabb為一個完全平方數,1 ≦a,b為正整數 ≦ 9 ,求(a,b) = ?? ------------------------------------------------------- classmates solution: aabb = 11 x a0b ,因為aabb為完全平方數,所以a0b可被11整除,故a+b = 11 之後用表列(a,b)...209,308,407,506........共8組用11除除看...看被11除過後所得的商是否為完全平方數。 最後可得aabb = 11 x 704 = 11 x 11 x 8 x 8 ,(a,b) = (7,4)# ------------------------------------------------------------------ faster solution: aabb = 11 x a0b ,因為aabb為完全平方數,所以a0b可被11整除 令 a0b = 11 x cd (二位完全平方數),由乘法分配律知 = cd x (10+1) = cd0 + cd 觀察10位數字,可知( c + d )之個位數字 = 0 ,所以c + d = 10 又 cd 是完全平方數,所以表列..(c,d) = (9,1),(8,2),(7,3),(6,4)...... 易知(c,d) = (6,4),所以aabb = 11 x 11 x 64 = 7744 ,所以(a,b) = (7,4)# (P.S.: 其實這個方法直接心算比較快^^) --------------------------------------------------------------------- 如果各位還有更好的方法也歡迎提供^^ --------------------------------------------------------------------- 其實很多解題方法都可以將一個題目完整解決,但是如果稍微改變一下思考路徑,就可以使過程更簡單,讓答案顯得更漂亮,何樂而不為呢?? |
|
( 知識學習|科學百科 ) |