網路城邦
上一篇 回創作列表 下一篇   字體:
C60---尤拉特徵數
2021/08/07 05:30:13瀏覽490|回應0|推薦4

§1 楔子

「為什麼足球面上非有正五邊形不可?」

1990年的一個早上,衛道中學。

這時候C60(富勒稀)正夯,化學老師老蔡如是問。

我當天下午在一家寵物店買了一個很小很可愛的足球送給他,並提供他一個證明,以酬多年情誼。

§2 所謂拓撲學

把一個曲面拉長、扭曲,只要不把它戳破或兩點黏起來叫作連續變形。

連續變形後不變的性質叫作拓撲性質。

1735年,尤拉研究哥尼斯堡七橋問題預告拓撲學之門即將展開。

假設一個多面體﹐點的個數=V,邊的個數=E,面的個數=F,則V-E+F=2就是一個拓撲性質,叫作尤拉示性數,在高等幾何是一個非常重要的性質。

球面的尤拉示性數=2,其證明早期列入高中課程中,並不困難。

§3 C60的幾何結構

正多面體有五種:正四面體、正方體、正八面體、正十二面體、正二十面體。稱為柏拉圖多面體。

C60,一個有20個正6邊形,12個正5邊形所構成的多面體,

60個碳就放在60個頂點上,是一個截角正20面體,亦即將一個正20面體的每一個凸角切掉大小適當的一塊如右圖,

這樣的結構有32個面,60個頂點,以及90條邊,當然合乎60-90+32=2

§4 從理論到應用

1985年,美國萊斯(Rice)大學的克爾(Robert F. Curl 1933~)﹑斯莫利(Richard E. Smalley 1943-2005)與英國瑟息斯(Sussex)大學的克魯圖(Harold W. Kroto 1939-)

從純理論推測,有由60個碳原子所組成的空心球狀分子C60存在,三人因此共獲1996年諾貝爾化學獎。

1990年德國的克拉舒末(Wolfgang Kr tschmer 1942~)與美國的哈夫曼(Donald Ray Huffman1935~)正式宣布他們製造出C60。

1991年飯島澄男(Sumio Lijima 1939~ ﹔2002年獲頒富蘭克林物理獎)提出奈米碳管的概念後,C60將成為21世紀關鍵材料。

另一方面,製作成的奈米機器人將提供一種新的醫療方法。

至於台灣,到1992年才有台大化學系的牟中原、陸天堯等人投入。

2010年西班牙卡納利天文研究所(Instituto de Astrofisica de Canarias)的天文學家與生化學家確認在大麥哲倫星系裡的SMP48有C60。

§5 證明足球面上有12個正五邊形

§6 習作

  1. 證明球面的尤拉示性數=2 
  2. 很多病毒是正20面體(icosahedron),例如:皰疹(herpes)病毒,水痘(chickenpox)病毒,人體疣(human wart)病毒,犬類傳染性肝炎病毒,腺病毒(adenovirus)等。
    用尤拉示性數證明:正多面體恰有5種。 
  3. 達文西 (1452~1519)曾作一幅素描,此素描是由邊長相等的正五邊形與正三邊形所組成的封閉多面體,且正五邊形每一邊都與正三角形共邊,且正三角形每一邊都與正五邊形共邊,則此多面體有幾個正五邊形?幾個正三角形?(建中通訊徵答 第九期 第89903題)

§7 後記

C60存在於天上(大麥哲倫星系)、地上(隕石),由數學理論、實驗室到量產,由古希臘時代到現代。時空事件的轉折充滿趣味且令人深思。

魏爾(Hermann Weyl 1885~1955)在其著作"Space-time-matter"中提議建立分子內部的數學。

史都華(Ian N. Stewart 1945~)1990年代寫的兩本書,"大自然的數學遊戲"與"生物世界的數學遊戲"中介紹生物數學的後續發展,說明數學是研究模式(pattern)的科學並提倡一種新的數學:形態數學(morphomatics),屬於微管的數學。

也許由研究C60引起的分子拓撲學正是大家所尋找的新數學。

我們的頭髮至少有一個漩渦,也是一個拓撲性質(覆蓋圓盤的連續切向量場一定有奇異點。),清大林文雄教授是這方面的專家。

至於為什麼我的漩渦變成地中海,那就不得而知了。

§8 參考資料

  1. "準正多面體"有13種,富勒稀是其中一種。阿基米德在西元三世紀就描述過了。
  2. 多面體百科全書
  3. 發現碳元素
  4. 1996年 諾貝爾化學獎
  5. 奈米碳網
  6. 天體中的富勒稀與石墨稀
  7. 分子拓撲學的出現(徐文光)
  8. 分子結構的新天地 二十一世紀雜誌 第13期 p.53 李榮基

( 創作另類創作 )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=zen2020&aid=166193689