網路城邦
上一篇 回創作列表 下一篇   字體:
Layout工程師必須懂的知識系列《EMC》or 在您想深入瞭解何謂《EMI》之前請先看此文。
2015/01/31 05:18:56瀏覽98454|回應175|推薦0

由於在Google輸入關鍵字「Layout EMC」後,來函向小弟索取完整版者人數有愈多之勢。因此自此時此刻 2020/08/07(五)01:50 起,來函向小弟索取完整版者,請使用銀行帳號轉帳付費新台幣10元整,轉帳之前可先加Line好友確認本人銀行帳號。待Line之系統通知本人帳款入帳後,本人最慢15分鐘內必將【EMC✚EMI】一文,寄給您.....謝謝。

(Line I.D. "paxonjiang"或掃描下方QRcode)

前言

    本篇文章為格主本人在Layout業界多年積累之經驗談,只分享給用功進取的您閱讀。另,因UDN部落格網頁預設系統關係,同一篇文章無法同時張貼多張圖片;故,所有貼圖於本文章中皆不顯示。欲所取「完整版(有詳細附圖)」者,請利用上述方式索取。


EMC的定義
    EMC:為Electro Magnetic Compatibility 的省略語,通常又翻成電磁相容性。在IEC(國際電氣標會議)的定義中為(對任何的東西而言,不給其無法容許的電磁干擾波,且在電磁環境中還需能具有滿足其功能的機器,裝置或系統的能力。

 而EMC又等於EMI+EMS (①、EMIElectro-Magnatic Interference的省略語,為電磁干擾的意思;②、EMS=Electro Magnatic Susceptibility, 意指:電磁敏感度。) EMC 定義的電磁干擾源,以及後半段的電磁干擾環境,都可以稱之為電磁雜訊,或以NOISE 來稱之。

EMC的組織
 IEC:國際電工標準會議,它函蓋全部的電機,電子技術,而以制定國際標準規格為目地,設立於1904年,現在於45 國家有帶表。由於對象非常的廣,因此在獨立的專長領域中,共有83個TC(Technical Committee)技術委員會。目前在TC中和EMC有關關者,為TC77和CISPR (International Special Committee on Radio Interference:國際無線電干擾特別委員會。)
 1.  TC77: 針對EMC的問題,以基本的規格,及通用規格為中心,審議規格的制定及修定。再者如電源高頻規格般,也針對低頻的制品類或製品規格的審議制定或修定。TC77下又區分為SC77A和SC77B的分科委員會。 SC77A處理9KHZ以下的低頻EMC問題,SC77B則處理超理超過9KHz的高頻EMC問題。
 2. CISPR:就各種製品類的個別規格併同其有關測試,進行規格的制定和修定。CISPR的規格的制定作業,由7個SC(Sub-committee):分科委員會AG及其下屬組織WG(Working group:工做組)擔任。例如:SC中有三個WG個別擔任下列的工做
    WG1:ITE的EMI
    WG2:有關通信線的EMI
    WG3:ITE的Immunity
  在IECIC,其後面會附加數字,但CISPR中則無。

概論

  在EMI的誕生中,有許多的變數。這是因為EMI是被動元件正常狀態行為以外的結果。如:TRACE在高頻的時候,其等效電路是電感串聯電阻。低頻的時候,其等效電路則是一電感。電阻在高頻的時候,其等效電路是電感串(電阻並聯電容)低頻的時候,其等效電路就是電阻。電容在高頻的時候, 其等效電路是RLC三者串聯。低頻的時候,其等效電路是電容。電感在高頻的時候,其等效電路是LC並聯。低頻的時候,則是電感。
  這一些特性,稱之隱藏電路。數位工程工師一般假設這些元件有單一的頻率響應,結果,其根據時域之功能特性來選擇元件而不管在頻域裡的實際表現,則EMI的情形就表現出來了。
  電磁干擾一般可以分成以下的兩種
   1. Conducted Disturbance
    干擾波的電磁能量主要是經由電力線和信號線等的導體而被傳達,侵入其它裝置給予的干擾者。
   2. Radiated Disturbance
           干擾波的電磁能量以電磁的形態傳播至被放射的空間,對其它的裝置給予干擾者。
  另外電磁干擾波又可依時間波形而分為
   1.  連續的干擾波:
    長時間的連續干擾。
   2. 過渡的干擾波:
    波形急速的變化,在短時間干擾者。
  所以,當你想到EMISSION的時候,第一條守則是:FREQUENCY愈高則可能是幅射耦合之路徑,FREQUENCY 愈低,則可能是傳導耦合之路徑。

MICROSTRIP AND STRIPLINE 的差別:

1.      MICROSTRIP:指的就是trace 經由一介質連接一完整平面。可提供PCB信號上的壓制,同時也可容許比STRIPLINE要快的CLOCK信號(因為有較小的耦合電容及較低的空載傳輸延遲。其不好的就是PCB外部信號層會幅射能量至外在環境,除非加上金屬屏蔽。

2.      STRIPLINE:信號層介於兩個solid plane 。STRIPLINE 可達到較佳的RF 防治,但只能用在較低的速度。因為信號層介於兩個solid plane之間,兩平面會有電容的耦合,導致降低信號的edge rate。

Layout 的基本觀念

二層板:對於二層有二種的layout技術。一種是較老之技術,適用於較低速之元件,一般包含DIP包裝之元件成排或成矩陣撞排列,現在己很少用。
第一種方式:
     將power和Ground以格狀layout,使形成之每一格總面積小於1.5吋平方。Power和 Ground之trace以90度角分佈。Power在一層,ground在另外一層。Ground trace 置於頂層,垂直走向。Power trace置於底層,水平走向在每一個groundtrace交接處,放置decoupling電容。
第二種方式:
 此種通常用於低於10kHz低頻類比設計。將power trace在同一層佈線層幅射狀拉線,由電源處接至每一元件,減少trace的總長度。將所有power和ground trace相鄰佈線。此可使得由來自高頻切換雜訊之環路電流最小,因而不會衝擊其它電路和控制信號。這一些trace會分開的唯一情況是要當連接到decoupling電容時。信號流向應和ground路徑並行。避免不同樹枝互相交錯,以免造成ground loop。低頻寄生電感及電容通常不會產生問題。在此情況下,建議可採用單點接地的方式。易言之,在低頻的應用上,藉layout達成之高頻表現。

      注意以下二點:
高頻時,控制所號路徑和其回返電流路徑之表面阻抗。
在低頻時,以控制layout的形狀而非阻抗。

 

四層板:四層板的堆疊只有一種方式。因使用power及ground,EMI的特性

有很大的改善。然而,四層板對產生自電路及trace之RF電流通量

消除之效果並不好。

第一層:Component side,信號及Clock

第二層:Ground Plane

第三層:Power plane

第四層:Solder side,信號及Clocks

如此可得知,當有多於三個完整平面提供的話(即一個power ground)

將最高速clock佈線於相鄰ground plane且不相鄰於power plane,可

得最佳EMI效果。此為在PCB上EMI抑制的基礎觀念。

多層板可提供優良EMC之信號品質,因為經由miocrostrip及stripline

可有效佳之信號阻抗控制。Power及ground plane之分佈阻

抗(distribution inpedance)應儘可能的降低。這一些平面含有來自

於logic crossover之極短暫的突波電流,及信號及匯流排之電容負載。

MICROSTRIP及Stripline應用之主要意義是在於磁通量之互相抵消。

使得傳輸線之電感降低。多數的邏輯族在其pull up/pull down

電流可能極不平均,此使得flux cancellation之效果在信號及ground

plane之間比信號及power plane之間要好。因此,使用power plane

作磁通量抵消不能達到最佳的效果,結果會導致信號通量相位偏移增

大電感,差的阻抗控制,及雜訊不穩定。故應使用ground plane要佳。

簡短的重述PCB flux cancellation之重要觀念。

並非有元件的pull up/pull down電流比都是一樣。

舉例來說,有的元件是65mA pull up/65mA pull down,有的則

是65mA pull up/65mA pull down 。此不均狀況造成Ground及

PowerPlane之不平衡。

 

 六層板:有三種方式。先說第一種…

第一種:

這個方式有最佳的EMI 特性,對所以佈線層有較好的Flux cancellation

如下。

第一層:component side, microstrip信號佈線層。

第二層:GROUND PLANE

第三層:Stripline,佈線層,(下跟著填充物質)。

第四層:POWER PLANE

第五層:GROUND PLANE

第六層:solder side, microstrip信號佈線層。

 

第二種:

為對CLOCK 和高頻元件,較常用的方式

第一層:component side, microstrip信號佈線層

第二層:Ground plane

第三層:Stripline

第四層:Stripline

第五層:Power plane

第六層:solder side microstrip信號佈線層

 

第三種:

此方式有較佳的EMI特性,因為在Ground及Power平面間有較好

之層間(decoupling )

第一層:component side, microsrip信號佈線層

第二層:埋入microstrip佈線層

第三層:Ground plane

第四層:Power plane

第五層:埋入microstrip佈線層

第六層:solder side, microstrip佈線層

 八層板:

有二種方式,第一種組態,提供較少的磁通量抵消,第二種組態

        因有較多的完整平面,提供最大的磁通量抵消。

        決定使用第一種或是第二種是基於所須佈線之NET的數量,元件

        密度(接腳數),匯流排結構之大小,類比和數位電路,及可用的面積。

      第一種:

因在電源及接地平面有較差之通量抵消,此為較差之堆疊方式

        有六層佈線層。

第一層:component side, microsrip信號佈線層

第二層:埋入microstrip佈線層

第三層:Ground plane

第四層:Power plane

第五層:Stripline佈線層

第六層:Stripline佈線層

第七層:埋入microstrip佈線層。

第八層:solder side, microstrip佈線層

      第二種

對RF電流有較緊密的磁通量抵消,此方式為較佳之堆疊方式,

        其有四層佈線層和四層平面。

第一層:component side, microsrip信號佈線層

第二層:Ground plane

第三層:Stripline佈線層

第四層:Ground plane

第五層:Power plane

第六層:Stripline佈線層

第七層:Ground plane

第八層:solder side, microstrip信號佈線層

   十層板:

第一層:component side, microsrip信號佈線層

第二層:Ground plane

第三層:Stripline 佈線層

第四層:Stripline 佈線層

第五層:Ground plane

第六層:Power plane

第七層:Stripline 佈線層

第八層:Stripline 佈線層

        第九層:Ground plane

        第十層:solder side, microstrip信號佈線層

 

20-H Rule

       由於磁通的連結,RF電流存在於Power plane之邊。此種層間耦合

       稱之(fringing),通常僅見於高速的pcb,當使用高速邏輯及clock時

       電源平面間,會互相耦合RF電流且幅射至空中,要減低效應,所有

       電源平面要比相鄰的地平面小。


元件的放置

PCB 佈局之前應先注意將元件放置(placement)在適當的位置,一方面需考慮電路板外部接線端子的位置,另一方面也需考慮不同性質的電路應予以適當的區隔。低階類比、高速數位以及雜訊電路(繼電器、高電流開關等等) 應加以分隔以降低子系統間的耦合。當放置元件時,應同時考慮子系統電路間的內部電路繞線,特別是時序及震盪電路。為了去除EMI的潛在問題,應該系統化的檢查元件放置與線路佈局,返覆檢視及修正佈線一直到確定所有的 EMI風險降低到最低為止,簡而言之,事先的防範是將低EMI干擾問題的首要原則。下圖說明將不同性質電路的區隔概念。      


數位電路的雜訊與佈線

類比電路的雜訊通常來自於電路板的外部,然而數位電路的雜訊則往往由內部產生,因此如何降低內部雜訊是數位電路板佈線的首要考量因素。

MCU為主的系統中最敏感的信號是時序、重置和中斷線路,震盪器在開機時尤為敏感。千萬不要將這些線路與高電流開關線路平行,如此易於被電磁交互耦合信號破壞。此效應容易破壞MCU經由中斷碼的執行,引起非預期的重置或中斷。時序信號受到干擾,將造成失相(lose phase)使整個系統失去同步,由於MCU的執行是依據適當的時鐘脈波,因此不要期望它們能在EMI的干擾下恢復正常操作。

震盪器或陶瓷共振時鐘是一種RF電路,必須繞線以減少它的發射位準及敏感性。圖15以一個震盪器或陶瓷共振器與DIP包裝的例子來說明,儘量將震盪電路的配置靠近MCU,若是震盪器或陶瓷共振器的本體很長,就放在PCB之下並將包裝接地。如果震盪器在PCB之外,就將MCU放在離PCB連接器的附近,不然,就將MCU儘量擺近震盪器以縮短繞線距離。震盪線路的地線應該連接元件可能使用最短繞線的接地腳位,電源和接地腳應該直接繞線到PCB的電源部分。圖16 說明PCB 挈b的?/FONT> I/O接地與I/O電纜線的解耦電容佈線方式。

類比電路的雜訊與佈線

低階信號(low-level signal)容易受到數位信號的干擾;如果類比和數位信號必須混雜,要確定彼此的線路相交成90度角,這將會降低交互耦合(cross coupling)的效應。

如果類比電路的signal reference未與數位線路隔離的話,類比-數位轉換器的訊號會受到嚴重的干擾,因此不可將數位電源和接地直接輸入類比-數位轉換器的signal reference線路。這些腳位應直接繞線自母板的電源端之參考電壓,此電壓參考腳位應用 l K歐姆的電阻和l.0 F電容來濾波。

 

Clock電路

Clock Generator和其相關文件,分佈導線為PCB產生之幅射之重要來源。Clock電路區是定義為包括振器和其buffer,drivers, 及相關元件(包含主元件及被動元件)之實體區域。

而clock電路放在機板的中央位置或是PCB之金屬銅柱接地點,而不要放在邊緣或是靠近I/O的區域。

如果clock要離開板子到附屬卡上,或是排線,或其它週邊等,則將clock電遠離內部連線,直接在連接器處對clock trace作terminated。Clock trace 要成點對點的幅射狀。在連接器端對clock作termonated。可提供一適切之終端,而不會使clock trace因未適當開路變成一單極天線,因而提升信號的品質。

除了對clock trace 有適當的終瑞外,同時也加強對RF的壓制,避免耦合至其它的敏感電路。將振器和晶體直接安裝在PCB板上,不要使用socket。

Socket會增加接腳長度之電感,並使得幅射和耦合路徑增多,造成RF電流及諧波幅射或耦合至內部或外部的環境中。


3W法則

有些訊號,尤其是固定週期的時脈訊號,帶有強烈的高頻成分。當它與其他信號線太靠近時,會將這些已達RF頻率的能量傳到其他的信號上,帶來EMI的困擾。尤其若是被感染的信號線接往I/O的連接頭時,這個問題就更加嚴重。這個問題其實就是前一節所提的隔線干擾。對EMI而言,通常要求信號線中心對信號線中心的距離,維持3倍信號線寬度的距離,稱為3W法則。3W法則可保持70%的電場不互相干擾。若要達到98%的電場不互相干擾,可使用10W的間距。


接地的方式

一個電子設備的設計關鍵即在於具有強韌的與可靠的電源系統,而接地佈局尤為其中關鍵。事實上,接地可視為所有好的PCB設計的基礎。大部分的EMI問題皆可藉由良好的接地來解決。

良好的接地方式是最經濟有效的方式。在PCB的設計上可使用二種接地方式。

但是接地方式的選擇是看產品應用而定。

在應用多點接地,切不可混用單點接地,除非有(isolation)式是依功能區分之子系統。


訊號接地的種類有二

   1.單點接地       2.多點接地

單點接地

單點接地又分為串接單點接地和並接單點接地。

從雜訊的觀點來看,串接單點接地是最差的接地方法。

(因為任何導線都會呈現一些電阻,故流經這些導線的電流會使導線產生壓降。)如下圖: 

並接單點接地

它在高頻的時候會有一些危險,因為trace在高頻的時候會表現電感的特性,使

得高頻的阻抗升高,而且接地線會產生電感性干擾的問題,如果頻率很高,這一些接地導線可能形成天線將雜訊幅射至外面。所以如果採用單點接地時,接地線

必須可能的縮短,使其高頻的阻抗變低,才不易形成天線。

當元件電路和信號在1MHz以下的時候,單點接地是最好的選擇。

而較高之頻率,power平面和trace的阻抗變的不可忽略。

如果trace 的長度等於或接近信號的四分之一波長,此阻抗會是非常的高。

注意:只要是trace 或ground導體具高阻抗,它就會像天線幅射RF的能量。

所以,在1MHz以上的頻率,一般不使用單點接地。

應用單點接地之信號通常以幅射狀傳遞,產品如:音頻電路,類比儀器,

60Hz和DC power系統。

多點接地

.....

欲接續觀看此文,

請付款20元購買完整文章,

謝謝。

( 知識學習隨堂筆記 )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=paxonjiang&aid=20544361

 回應文章 頁/共 18 頁  回應文章第一頁 回應文章上一頁 回應文章下一頁 回應文章最後一頁

Lin
2021/11/17 21:09
版主您好:
對您的文章很感興趣且獲益良多,請問能否向您索取完整文章內容? 感謝您!

(p269228@gmail.com)(p269228@gmail.com)

JC HUANG
2021/08/23 13:01
希望能得到版主完整版【Layout工程師『EMC』】文章,jenzo.huang @gmail.com,謝謝版主(jenzo.huang @gmail.com)

Joyce
2021/07/01 09:49
請問能否和您索取完整文章內容?謝謝您(xyang8267@gmail.com)

d097033@hotmail.com
2021/06/09 14:49
板主,對於您的文章很有興趣,請問能否和您索取完整文章內容?? 感謝您!!(d097033@hotmail.com)(d097033@hotmail.com)

Jie
2021/04/13 07:56
我對您分享的內容很感興趣,請問是否能和您索取完整文章內容? 付費完後要怎麼告知您呢? 感謝~

(jack124500@gmail.com)(jack124500@gmail.com)

阿高
2021/03/30 09:17
版主 您好:
我對你的文章很感興趣,請問能否和您索取完整文章內容?? 感謝!!

(andy121839@gmail.com)

小偉
2021/03/21 20:02
版主 您好:
我對您的文章很感興趣,請問能否和您索取完整文章內容?? 感謝您~
a950881b@gmail.com)(a950881b@gmail.com)

sdyte2011@gmail.com
2021/03/16 23:13
版主您好 關於此篇文章能否請您提供完整內容(sdyte2011@gmail.com) 感謝您 В этой статье рассказывается об опыте, накопленном самим мастером в верстачной индустрии за многие годы, и делится им только с вами, трудолюбивыми и инициативными. Кроме того, из-за системы по умолчанию на веб-странице блога UDN нельзя одновременно опубликовать несколько изображений для одной и той же статьи; поэтому в этой статье не отображаются все изображения. Если вы хотите получить «полную версию», используйте «Facebook» или «UDN», чтобы оставить свой адрес электронной почты внизу статьи; я пришлю [Layout Engineer «EMC» в течение одного месяца с даты отправки сообщение)】 Статья отправлена ​​вам. Спасибо. Серверы сервер сервер делл Определение EMC EMC: это сокращение от Electro Magnetic Compatibility, обычно переводимое как электромагнитная совместимость. По определению МЭК (Международная конференция по электрическим стандартам) это так (ни для чего не допускаются волны электромагнитных помех, которые недопустимы, а также возможность иметь машину, устройство или систему, которые соответствуют своим функциям в электромагнитной среде).

小熊
2021/01/12 14:28

版主 您好:
我對你的文章很感興趣講的也很仔細

請問能否和您索取完整文章內容?? 感謝!!

(miaobear0224@gmail.com)

Adrian
2020/12/15 11:07

感恩版主,覺得學到很多

請問是否方便跟板主要完整文章、非常感謝

Email:gema1014@gmail.com

(gema1014@gmail.com)
頁/共 18 頁  回應文第一頁 回應文章上一頁 回應文章下一頁 回應文章最後一頁