字體:小 中 大 | |
|
|
2013/04/11 21:58:42瀏覽1271|回應0|推薦1 | |
二、發展氫能的瓶頸 研發替代能源的專家都希望讓氫燃料電池車取代以汽油為燃料的汽車,目標就是讓氫氣能與石油在能源用途上相提並論。氫能經濟的主要動力就是取代汽車對石油的依賴,氫能至今還没有被廣泛使用的主要原因是成本過高,燃料電池的成本很高,氫的製造、貯存和輸送的費用也相當高。氫氣雖然在地球上無處不在,不過它通常都和其它物質合成在一起,很少單獨存在,因此,分離純氫氣不是一件容易的事。核能、太陽能、煤碳都是主要的能源來源,而氫氣不是,它不單獨存在,它需要被製造出来。電力也不單獨存在,它也需要被生產出來。所以,不論是氫氣還是電力,都必須利用一種主要能源把他們製造出來,發展氫能的瓶頸技術問題包括氫的生產、運輸、貯存及安全問題。 (一)氫的生產 目前工業上應用的製氫方法主要是甲烷蒸氣重整和水電解法,前者製氫過程和產物都產生大量的二氧化碳,後者則需要大量的電能成本較高。目前許多國家都在執行氫能的研究及開發工作,要發展氫能經濟,需要研究可持續的、非化石燃料的、過程不產生温室 1. 氧化物体系 氧化物体系是利用較活潑的金屬與其氧化物之間的互相轉換或不同價態的金屬氧化物之間進行氧化還原反應的兩步循環,一是高價氧化物(MOox )在高溫下分解成低價氧化物(MOred ),放出氧氣,二是MOred被水蒸汽氧化成MOox並放出氫氣。目前的主要研究方向是尋找能在較低温度下分解的氧化物体系。 MOred (M) + H2O → MOox + H2 (1) MOox → MOred (M) + 1/2 O2 (2) 2. 含硫体系 含硫体系研究的循環主要有4個 : 碘硫循環、H2SO4 -H2S循環、硫酸-甲醇循環和硫酸鹽循環,其中研究最廣泛的是碘硫循環如圖1所示,碘硫循環由美國GA公司發明,除美國外,日本、法國也都選擇碘硫循環作為未來核能製氫的首選 。 理論上,該過程由3個反應組成 : Bunsen 反應產生 SO2 + I2 + 2H2O → HI + H2SO4 (3) 硫酸分解反應 H2SO4 → H2O + SO2 + 1/2 O2 (4) 氫碘酸分解反應 2HI → H2 + I2 (5) 淨反應為水分解 H2O → H2 + 1/2 O2
圖1 核能製氫方法
3. 金屬-鹵化物体系 在金屬-鹵化物体系中,氫氣的生成反應可以表為 3MeX2 + 4H2O → Me3O4 + 6H2O + H2 (7) 其中Me可為 Mn及Fe , X可為Cl 、Br 及 I。該体系中最著名的循環為日本東京大學發明的絕熱UT23循環 ,金屬選用Ca ,鹵素選用Br。 4.熱化學雜化循環 熱化學雜化過程是水裂解的熱化學過程與電解反應的聯合過程,雜化過程為低温電解反應提供了可能性,而引入电解反應則可使流程簡化。效率最高並經循環驗証的是Westinghouse循環。Westinghouse循環和碘硫循環相同的步驟是硫酸的高温分解,碘硫循環利用較低品位的熱從其它中間產物產氢,Westinghouse循環則採取了兩個新步骤: (1) 用H2O吸收SO2 ,釋放O2形成電解液(2) SO2水溶液電解,形成H2SO4並放出H2 。 (二)氫的傳輸 程,壓力可以高至 400 大氣壓,因此需要定期檢查它的安全。 由於溫度超低,液態氫的儲存需要特殊的低溫裝置,以減少氫氣的蒸發。 3.固態形式:使氫氣吸附在金屬氫化物或奈米碳管上加以儲存。金屬氫化物有很多種,氫的吸附率大多是本身重量的 1 ~ 2%,金屬氫化物也會透過化學吸附的方式吸附其他氣體,但不釋放,因此釋放出來的氫氣是很純的。奈米碳管的管徑由數個至數十奈米都有,空孔的比率很高,是一種理想的儲氫材料。固態儲氫方式的最大優點就是安全和方便,氫能不管是以高壓、低溫或金屬氫化物的方式儲存,都無法和汽油箱相比。因此尋找質量輕、體積小、價格便宜且安全的儲存方法是推廣氫能經濟的要件。 (四)安全問題 氫在常溫下是一種無色、無臭、無毒的氣體,甚至燃燒的火焰都是無色的,很不容易察覺它的存在。它的問題出在很容易燃燒和爆炸,在空氣中含有 3 ~ 75% 體積的氫氣都可引發氣爆,而天然氣的範圍是 5 ~15%。除了前述可能的氫脆問題之外,由於氫是分子量最小的氣體,運動速度非常快,滲透性也最強,因此所有的管線或儲存槽的界面連接都須非常嚴緊,氫氣閥需要特別設計,否則很容易產生漏氣問題。
參、核能製氫 一、核能製氫的背景 韓國原子能研究院朴 氫製造需耗費巨大能量而使其成本增高.而高温氣冷式反應器能以很低的成本提供巨大的能量,從而大幅降低製氫成本.因此,核能製氫有可能成為未來生產清潔能源極具競爭力的新興產業。多種新開發的技術將使氫能成為21世紀的主要能源之一。科學家認為能源正從現在的資源依賴向技術依賴轉變。從煤轉到石油,從石油轉到氫能,21世紀的第四代高温氣冷式反應器工率彈性大、投資低、系統簡單、建造工期短、經濟競爭力強,對中、小型工業區極其適合。高溫氣冷式反應器所需面積不大,只要
圖2. 各種能源使用土地面積 各國發展氣冷式反應器的情形如下: (一)中國 中國的
圖3. 球床式反應器的構造
(二)日本的核能製氫發展 日本的氫能發展是依據2003年能源政策基本法制定的能源供需基本計畫,日本原子力開發機構(JAEa)的目的是研究高溫氣冷式反應器在熱能上的應用包括製氫,日本開發的30MWt的高溫實驗爐(HTTR)在1998年啟動,成功地在
|
|
( 知識學習|科學百科 ) |