網路城邦
上一篇 回創作列表 下一篇  字體:
可印式及無晶片式RFID市場預測及技術、企業:2011-2021年
2010/10/10 18:43:07瀏覽1078|回應0|推薦0

Printed and Chipless RFID Forecasts, Technologies & Players 2011-2021

出版商:IDTechEx Ltd.

出版日期:2010/09

價格:US $ 2,795

簡介:

全球可印式及無晶片式RFID標籤銷售數量,預計將由2011年之1200萬急速成長至2021年之2090億。無晶片式RFID金額預計將由2011年之138萬美金成長至2021年之16億5000萬美金。

本報告為,調查今後10年間可印式及無晶片式各種產業別RFID於市場之普及度,並匯整各技術選擇評估、開發技術之主要企業簡介等,以下列摘要形式闡述。

第1章 簡介

第2章 可印式及無晶片式RFID技術

  • 比較:第1代
  • 商業性成功
  • HID巴克好生卡:存取保證
  • 成功是來自其他方式失敗之教訓
  • 電磁
  • 掃瞄RF LC矩陣

第3章 第2代無晶片式RFID:潛在開放系統

  • 主要競爭企業比較
  • 電磁導電油墨RFID
  • 印刷雷達陣列
  • 表面聲波
  • 薄膜電晶體迴路(TFTC)
  • 其他
  • 最低價之天線設計
  • 無機導體
  • 新導電油墨於化學性質和固化過程之相關進步

第4章 薄膜電晶體迴路(TFTC)

  • 潛在優勢及劣勢vs.矽
  • 技術發展:幾何、載流子遷移、基板
  • 電子智慧包裝中TFTC能極大進步之理由
  • 薄膜矽vs.有機或無機
  • 可印式半導體之主要選擇
  • 主動式TFTC RFID之機會
  • TFTC企業比較
  • RFID可印式記憶

第5章 RFID顯示及感測器

  • 選擇顯示
  • 選擇感測器

第6章 無晶片式RFID市場:2011-2021年

  • 無晶片式RFID標籤銷售實績
  • RFID市場之無晶片式市場佔有率、銷售數別:2011-2021年
  • 無晶片式RFID、技術別:2011-2021年
  • 單價趨勢、無晶片式技術別:2011-2021年
  • 總RFID市場金額之無晶片式市場佔有率:2011-2021年
  • 總RFID市場之無晶片式vs.晶片市場佔有率、金額別:2011-2021年
  • RFID市場、系統元件別:2011-2021年
  • RFID市場、標籤位置別:2011-2021年、無晶片式目標
  • 市場轉移至東亞地區:2011、2016、2021年
  • EPC、其他讀取器市場:2011-2021年
  • 超低價RFID標籤:市場規模
  • 產品及包裝上直接之可印式RFID:市場規模
  • 低價之主動式RFID:市場規模
  • 抗輻射RFID:市場規模
  • 容錯RFID:市場規模
  • 超薄低價RFID:市場規模
  • 即時定位系統(RTLS):市場規模

第7章 可印式及無晶片式/可印式RFID市場普及時間軸

  • 第2代無晶片式RFI發展時間軸
  • 可印式RFID時間軸
  • 可印式有機電子時間軸
  • 產品及包裝上直接之可印式RFID之時間軸

第8章 供應商、開發商簡介

附錄1-4

圖表

目錄:

Abstract

“The biggest opportunity for RFID is the item level tagging of all things”

The biggest opportunity for RFID

The biggest opportunity for RFID is the item level tagging of all things. This ultimately calls for a very low cost tag, something that some printed and chipless RFID technologies have already demonstrated or have the potential to achieve. Interestingly, few of the biggest chip RFID suppliers are working on these technologies. Instead, printers, packagers and electronics and materials companies are leading development, some seeing the ultra low cost RFID tag as just the beginning - with integrated ultra low cost components such as displays, sensors and power to come. This is the only report to cover the technologies, players, opportunities and challenges of what will become the most widely used RFID technology type. Detailed forecasts are given and global progress assessed.

Ten year forecasts

RFID tags that do not contain a silicon chip are called chipless tags - some of which can be printed. The primary potential benefit of the most promising chipless tags is that eventually they could be printed directly on products and packaging for 0.1 cents and replace ten trillion barcodes yearly with something far more versatile and reliable.

The next ten years will see a rapid gain in market share of mainstream printed and chipless RFID tags. The numbers sold globally will rise from 12 million in 2011 to 209 billion in 2021. By value, chipless versions will rise from less than $1.38 million in 2011 to $1.65 billion in 2021, about one fifth of all income from RFID tags in 2021 because most of the increase in penetration will be by price advantage.

This report gives the penetration of printed and chipless RFID into many different market verticals over the next ten years. It gives assessment of the different technology options and profiles of the main companies developing these.

What you will learn

  • The world' s only in depth report covering printed and chipless RFID technologies and companies
  • Detailed market forecasts by printed and chipless technology from 2011 to 2021 available only from IDTechEx
  • Analysis of the technologies being implemented today
  • Detailed case histories and company profiles of the many trials and sales successes of printed and chipless RFID
  • Sales leads and opportunities
  • Unbiased assessment of who will be the winners and losers in the shakeout and what the future will bring

Report Statistics
  • Pages: 282
  • Tables: 58
  • Figures: 78
  • Case Studies: 20+
  • Forecasts to: 2021
  • Last update: Q3 2010

Table of Contents

EXECUTIVE SUMMARY AND CONCLUSIONS

1. INTRODUCTION

  • 1.1. Roadmap for RFID 2010-2021
  • 1.2. What are printed and chipless RFID tags?
  • 1.3. Why are they needed in supply chains?
    • 1.3.1. Consumer Packaged Goods (CPG)
    • 1.3.2. Pharmaceuticals
  • 1.4. Where else will chipless RFID be needed?
    • 1.4.1. Ubiquitous Sensor Networks
    • 1.4.2. Transit
    • 1.4.3. Self adjusting use by date
    • 1.4.4. Assets
    • 1.4.5. Laundry and rented garments
    • 1.4.6. Books at manufacture
    • 1.4.7. Postal items
    • 1.4.8. Conveyances, logistics, traffic management
  • 1.5. Silicon chips and EPCglobal
    • 1.5.1. Shortcomings of silicon chip RFID
    • 1.5.2. Shortcomings of Gen2 EPC - universality by tag complexity
    • 1.5.3. Robustness of the layered approach backed by EPCglobal
    • 1.5.4. Implications
  • 1.6. Constraints on market growth
    • 1.6.1. Impediments to highest volume RFID
  • 1.7. Ultimate potential
    • 1.7.1. Potential for different applications
    • 1.7.2. Tag price sensitivity at highest volumes
    • 1.7.3. Price sensitivity curve for RFID (adoption curve)

2. PRINTED AND CHIPLESS RFID TECHNOLOGIES

  • 2.2. Comparison - first generation
  • 2.3. Commercial successes
    • 2.3.1. Acoustomagnetic tags - error prevention
    • 2.3.2. SAW tags - X-CYTE, MicroDesign, iRay Technologies, Thoronics, CTR
  • 2.4. HID Barkhausen cards - secure access
  • 2.5. Lessons from the limited success or failure of other approaches
  • 2.6. Electromagnetic - Flying Null, Link-Sure, Confirm Technologies, REMOSO, Holotag, Zebra Technologies, Scipher TSSI, MXT, Fuji Electric, Unitika
  • 2.7. Swept RF LC array - Miyake, Lintec, CWOSRFID, Navitas, Checkpoint, TagSense, RFCode

3. SECOND GENERATION CHIPLESS RFID - POTENTIALLY OPEN SYSTEMS

  • 3.1. The main contenders compared
  • 3.2. Electromagnetic conductive ink stripe RFID - Mreal, VTT, Panipol, ACREO, Somark Innovations, Menippos, Printed Systems
    • 3.2.1. New ink stripe format
    • 3.2.2. Potential advantages and disadvantages vs silicon
    • 3.2.3. Market thrust
    • 3.2.4. Technical development
    • 3.2.5. The Somark Innovations product
    • 3.2.6. The Mreal/ VTT Technologies/ Panipol product
    • 3.2.7. ACREO
    • 3.2.8. Printechnologics (formerly Menippos)
  • 3.3. Printed radar arrays, InkSure, Nicanti and Vubiq
    • 3.3.1. Inksure
    • 3.3.2. Nicanti
    • 3.3.3. Vubiq
  • 3.4. Surface Acoustic Wave - RFSAW, Thoronics
    • 3.4.1. Potential advantages and disadvantages vs silicon
    • 3.4.2. Market thrust
    • 3.4.3. Technical development
    • 3.4.4. SAW Standards EPCglobal
    • 3.4.5. Companies seeking SAW open systems - RFSAW, IBM Global Services, Thoronics
    • 3.4.6. Case study: Highway non-stop tolling USA - RFSAW
    • 3.4.7. Case study: SAW tags in space on the International Space Station
  • 3.5. Thin Film Transistor Circuits (TFTCs)
  • 3.6. Other
    • 3.6.1. How to Eat RFID
  • 3.7. Lowest cost antenna design
    • 3.7.1. Choice of electrodes and interconnects
  • 3.8. Inorganic conductors
    • 3.8.2. Comparison of metal options
    • 3.8.3. Polymer - metal suspensions
    • 3.8.4. Silver solution
  • 3.9. Progress with new conductive ink chemistries and cure processes

4. THIN FILM TRANSISTOR CIRCUITS (TFTCS)

  • 4.1. Potential advantages and disadvantages vs silicon
  • 4.2. Technical development - geometry, carrier mobility, substrate
    • 4.2.1. Transistor geometry or mobility?
    • 4.2.2. The compromises in choosing substrates
    • 4.2.3. TFTCs best suited for non-RFID applications in the short term?
    • 4.2.4. A key limitation is frequency
    • 4.2.5. Low cost not guaranteed
  • 4.3. Why TFTCs will be the biggest breakthrough in electronic smart packaging
  • 4.4. Thin film silicon vs organics or inorganics
    • 4.4.1. First came thin film silicon
    • 4.4.2. Organic semiconductors - two choices
    • 4.4.3. PolyIC developments
    • 4.4.4. Dai Nippon Printing semiconductor development
    • 4.4.5. OrganicID, Weyerhauser
    • 4.4.6. Power conservation - CMOS
    • 4.4.7. Progress towards flexible/biodegradable substrates for organic TFTs
    • 4.4.8. Move to inorganic semiconductors
    • 4.4.9. Kovio - inorganic semiconductors
    • 4.4.10. Carbon Nanotubes
  • 4.5. The main options for the printed semiconductor
    • 4.5.2. Do organic transistors have a future?
    • 4.5.3. RFID printed directly on products and packaging
  • 4.6. Opportunities for active TFTC RFID
    • 4.6.1. Company strategy and value chain
  • 4.7. TFTC players compared
  • 4.8. Printed memory for RFID- HP, Ricoh, Matsushita, Thin Film Electronics, Fuji Film and others

5. DISPLAYS AND SENSORS FOR PRINTED RFID

  • 5.1. Choice of displays
    • 5.1.2. Thermochromic
    • 5.1.3. Electrochromic
    • 5.1.4. Electrophoretic
    • 5.1.5. Applications of E-paper displays
  • 5.2. Choice of sensors

6. MARKETS FOR CHIPLESS RFID 2011-2021

  • 6.1. Historical sales of chipless tags
    • 6.1.2. Cumulative sales chip vs chipless
  • 6.2. Chipless share of RFID market by numbers 2011-2021
  • 6.3. Chipless RFID by technology 2011-2021
  • 6.4. Unit price trends by chipless technology 2011-2021
  • 6.5. Chipless share of total RFID market value 2011-2021
  • 6.6. Chipless vs chip share of total RFID market by value 2011-2021
  • 6.7. RFID market by system component 2011-2021
  • 6.8. RFID market by location of tag 2011-2021 and chipless targets
  • 6.9. Move of markets to East Asia 2011, 2016, 2021
  • 6.10. Market for EPC and other interrogators 2011-2021
  • 6.11. Ultra low cost RFID labels - market size
  • 6.12. RFID printed directly onto products and packaging - market size
  • 6.13. Low cost active RFID - market size
  • 6.14. Radiation tolerant RFID - market size
  • 6.15. Fault tolerant RFID - market size
  • 6.16. Ultra thin low cost RFID - market size
  • 6.17. Real Time Locating Systems (RTLS) - market size

7. TIMELINES FOR PRINTED AND CHIPLESS/PRINTED RFID MARKET PENETRATION

  • 7.1. Timelines for developments in second generation chipless RFID
  • 7.2. Timeline for printed RFID
  • 7.3. Timeline for printed organic electronics
  • 7.4. Timeline for direct printing of chipless RFID onto products and packaging

8. SUPPLIER AND DEVELOPER PROFILES

  • 8.1. 3M, USA
  • 8.2. ACREO, Sweden
  • 8.3. BASF
  • 8.4. Dai Nippon Printing
  • 8.5. IBM, USA
  • 8.6. Inksure, Israel and USA
  • 8.7. Kovio USA
  • 8.8. M-real, Sweden
  • 8.9. OrganicID, USA
  • 8.10. Panipol, Finland
  • 8.11. Philips
  • 8.12. PolyIC, Germany
  • 8.13. RFSAW, USA
  • 8.14. Soligie
  • 8.15. Toppan Forms
  • 8.16. Toppan Printing
  • 8.17. VTT Technology, Finland
  • 8.18. VubiQ, USA

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY

APPENDIX 2: PRINCIPLES OF OPERATION OF FIRST GENERATION CHIPLESS RFID

APPENDIX 3: THE ASTRAZENECA - SCIENTIFIC GENERICS SUCCESS

APPENDIX 4: GLOSSARY

TABLES
  • 1.1. Results achieved in studies of both cost reduction and increase in sales achievable with item level RFID in the supermarket.
  • 1.2. The main impediments to highest volume RFID
  • 1.3. Ultimate potential annual global sales by 2030 of some of the most promising tagged things that have potential for up to one billion tags used yearly.
  • 1.4. Ultimate potential annual global sales by 2030 for some of the most promising tagged things with potential of over one billion tags yearly.
  • 2.1. Ten different types of chipless RFID technology
  • 2.2. The ten types of first generation chipless RFID technologies compared.
  • 2.3. Advantages and disadvantages of RFSAW devices
  • 3.1. Comparison of the main contenders
  • 3.2. Detailed comparison of second generation chipless options
  • 3.3. Size of the application areas
  • 3.4. Conductance in ohms per square for the different printable conductive materials compared with bulk metal
  • 3.5. Comparison of performance of conductive layers for RFID antennas in ohms per square meter
  • 3.6. Examples of ink suppliers progressing printed RFID antennas etc
  • 3.7. Comparison of metal etch (e.g. copper and aluminium) conductor choices
  • 3.8. Electroless metal plate - Additive print process with weakly conductive ink (e.g. plastics or carbon) followed by wet metal plating
  • 3.9. Electro metal plate - Additive print process with weakly conductive ink (e.g. plastics or carbon) followed by dry metal plating
  • 3.10. Printable metallic conductors cure at LT e.g. silver based ink
  • 3.11. A typical process cost comparison for RFID antennas
  • 3.12. Possibilities for various new printed conductors.
  • 4.1. Envisaged benefits of TFTCs in RFID and other low-cost applications when compared with envisaged silicon chips
  • 4.2. Typical features demanded of high volume RFID tags
  • 4.3. Probable value split of the global passive RFID market as a function of frequency, in 2016
  • 4.4. Benefits of the best TFTCs versus very small silicon chips
  • 4.5. Overall choices of semiconductor
  • 4.6. Typical carrier mobility in different potential TFTC semiconductors (actual and envisaged) vs higher mobility silicon, not printable.
  • 4.7. Comparison of some of the main options for the semiconductors in printed and potentially printed transistors
  • 4.8. Transistors - first significant commercial product in 2009
  • 4.9. Objectives and challenges of organisations developing printed and potentially printed transistor and/ or memory circuits and/or their materials
  • 4.10. Some of the small group of contestants for large capacity printed memory
  • 5.1. Qualities of the various display options for printed RFID
  • 5.2. Advantages and disadvantages of electrophoretic displays
  • 5.3. Comparison between OLEDs and E-Ink of various parameters
  • 6.1. Historical sales of chipless RFID tags
  • 6.2. Cumulative global sales of RFID tags chip vs chipless/printed to end of 2009 in millions
  • 6.3. Deliveries of chipless/printed tags to date by company
  • 6.4. Overall global RFID market by numbers 2010-2021 with chipless and chip share
  • 6.5. Sales in billions of the main types of chipless tag 2010-2021
  • 6.6. Unit price in cents of the various types of chipless RFID 2010-2021
  • 6.7. Market value of global sales of chipless tags by technology in millions of dollars 2010-2021
  • 6.8. Chipless and chip share of the total global market for RFID tags 2010-2021
  • 6.9. Total global RFID market 2010-2021 by value of tags, interrogators and other
  • 6.10. Number (in millions) of tags by application 2010-2021
  • 6.11. Average tag price per application in US cents 2010-2021
  • 6.12. Value of tags by application 2010-2021 (US Dollar Millions)
  • 6.13. Total spend on RFID systems, service and tags 2011, 2016, 2021 by territory
  • 6.14. Market for RFID interrogators by application, US dollars billions
  • 7.1. Timelines for developments in second generation chipless RFID

FIGURES
  • 1.1. Malaysian project for Ubiquitous Sensor Networks etc
  • 1.2. What is USN in Korea?
  • 1.3. The attributes of the main types of chipless tag compared with silicon chip alternatives
  • 1.4. Layers of logistic units
  • 1.5. Technologies appropriate to the different levels of tag cost and volume.
  • 1.6. The adoption curve
  • 1.8. The overall price-volume sensitivity envelope
  • 2.1. Principle of a SAW tag
  • 2.2. SAW tag system
  • 2.3. Carinthian Technical Research
  • 2.4. Sensor System Development
  • 2.5. CTR heavy duty SAW RFID tag
  • 3.1. Layout of the ACREO ink stripe RFID
  • 3.2. Main Features of the M-real/ VTT technology HidE chipless RFID and IDTechEx portrayal of a typical format for conductive ink stripes on this product and the ACREO product about 1centimeter by six centimeters.
  • 3.3. HidE hidden Electronic Product Code production roadmap
  • 3.4. Potential applications of HidE ink stripe RFID
  • 3.5. Strengths and weaknesses of HidE chipless RFID
  • 3.6. Vubiq
  • 3.7. Planned miniature SAW tag with 2.45 GHz dipole antenna
  • 3.8. Options for interconnect, antenna and electrode materials to make high speed transistor circuits
  • 3.9. InkTec soluble silver inks. Left: Transparent Electronic Ink. Right: Transparent Inkjet Inks
  • 3.10. Patterning using InkTec ink
  • 3.11. Typical SEM images of CU flake C1 6000F. Copper flake
  • 3.12. Novacentrix PulseForge
  • 3.13. Curing layers
  • 4.1. Coplanar electrode thin film transistor
  • 4.2. Options for high speed, low-cost printing of TFTCs
  • 4.3. Evolving level of difficulty of substrates in creating low-cost TFTCs
  • 4.4. Experimental PolyIC (formerly Siemens) 32-bit RFID smart label using printed polymer semiconductors
  • 4.5. Basic setup and issues
  • 4.6. Chemical structure of polymer FET
  • 4.7. PolyIC integrated rectifier
  • 4.8. Development of continuous printing methods by PolyIC
  • 4.9. Slides from PolyIC show their progress with printed TFTCs for RFID.
  • 4.10. Printable organic semiconductors - the compromise.
  • 4.11. Performance of Kovio' s ink versus others by mobility
  • 4.12. Road map
  • 4.13. Requirements of organic electronics to the process
  • 4.14. Requirements of organic electronics to the substrate
  • 4.15. Comparison of PET - Surfaces
  • 4.16. Possible film substrates
  • 4.17. More possible film substrates
  • 4.18. Paper as a substrate for organic electronics
  • 4.19. Value chain for TFTCs and examples of migration of activity for players
  • 4.20. An all-organic permanent memory transistor
  • 4.21. TFE memory compared with the much more complex DRAM in silicon
  • 4.22. Structure of TFE memory
  • 4.23. TFE priorities for commercialisation of mega memory
  • 5.1. Experimental printed flexible polymer OLED by Dai Nippon Printing
  • 5.2. Duracell battery tester
  • 5.3. Interactive game on a beer package by VTT Technologies in Finland
  • 5.4. Electrochromic display on a Valentine' s card sold by Marks and Spencer in the UK in 2004 and electrochromic display with drive circuits in a laminate for smart cards.
  • 5.5. Principle of operation of electrophoretic displays
  • 5.6. E-paper displays on a magazine sold in the US in October 2008
  • 5.7. Retail Shelf Edge Labels from UPM
  • 5.8. Amazon Kindle 2, launched in the US in February 2009
  • 5.9. Electrophoretic display on a commercially sold financial card
  • 5.10. Electrophoretic display combined with a UHF RFID tag (silicon chip tag)
  • 6.1. An AstraZeneca syringe with chipless RFID tag
  • 6.2. Dropping prices for RFID tags
  • 6.3. Projections for Real Time Locating Systems 2007-2010
  • 7.1. PolyIC roadmap for printed RFID
  • 7.2. PolyIC roadmap to success for printed organic RFID
  • 7.3. DNP roadmap for plastic electronics
  • 8.1. Printed Flexible Circuits from Soligie
  • 8.2. Capabilities of Soligie
  • 8.3. Printed electronics from Soligie
  • 8.4. Printing presses used for printing electronics at Soligie
  • 8.5. An e-label from Soligie
  • 8.6. A flexible display sample
  • 8.7. Printed electronics samples

資料來源: http://www.giichinese.com.tw/report/ix133772-printed-chipless-rfid.html

( 興趣嗜好電腦3C )
回應 推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=t8830209&aid=4487264