|
|
文章數:67 |
NINI 尼尼台中店有什麼推薦搭配? 》台中公益路高人氣餐廳推薦|10家好吃又好拍 |
| 休閒生活|其他 2025/11/26 13:22:54 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
身為一個熱愛美食、喜歡在城市裡挖掘驚喜的人,臺中公益路一直是我最常出沒的地方之一。這條路可說是「臺中人的美食戰場」,從精緻西餐到創意火鍋,從日式丼飯到義式早午餐,每走幾步,就會有完全不同的特色料理餐廳。 這次我特別花了一整個月,實際造訪了公益路上十間口碑不錯的餐廳。有的是網友熱推的打卡名店,也有隱藏在巷弄裡的小驚喜。我以環境氛圍、口味表現、價格CP值與再訪意願為基準,整理出這篇實測評比。希望能幫正在猶豫去哪裡吃飯的你,找到那一間「吃完會想再來」的餐廳。 評比標準與整理方向
這次我走訪的10家餐廳橫跨不同料理類型,從高質感牛排館到巷弄系早午餐,每一間都有自己獨特的風格。為了讓整體比較更客觀,我依照以下四大面向進行評比,並搭配實際用餐體驗來打分。
整體而言,我希望這份評比不只是「哪家好吃」,而是幫你在不同情境下(約會、家庭聚餐、朋友小聚、商業午餐)都能快速找到合適的選擇。畢竟,美食不只是味覺的滿足,更是一段段與朋友共享的生活記憶。 10間臺中公益路餐廳評比懶人包公益路向來是臺中人聚餐的首選地段,從火鍋、燒肉到中式料理與早午餐,每走幾步就有驚喜。以下是我實際造訪過的10間代表性餐廳清單,橫跨平價、創意、高級各路風格。
一頭牛日式燒肉|炭香濃郁的和牛饗宴,約會聚餐首選
走在公益路上,很難不被 一頭牛日式燒肉 的木質外觀吸引。低調卻不失質感的門面,搭配昏黃燈光與暖色調的內裝,讓人一進門就感受到濃濃的日式職人氛圍。店內空間不大,但桌距規劃得宜,每桌皆設有獨立排煙設備,烤肉時完全不怕滿身油煙味。 餐點特色
一頭牛的靈魂,絕對是他們招牌的「三國和牛拼盤」。 用餐體驗整體節奏掌握得非常好。店員會在你剛想烤下一片肉時貼心遞上夾子、幫忙換烤網,讓人完全不用分心。整場用餐過程就像一場表演,從視覺、嗅覺到味覺都被滿足。 綜合評分
地址:408臺中市南屯區公益路二段162號電話:04-23206800 官網:http://www.marihuana.com.tw/yakiniku/index.html 小結語一頭牛日式燒肉不僅是「吃肉的地方」,更像是一場五感盛宴。從進門那一刻到最後一道甜點,都能感受到他們對細節的用心。 TANG Zhan 湯棧|文青系火鍋代表,麻香湯底與視覺美感並重
在公益路這條美食戰線上,TANG Zhan 湯棧 是讓人一眼就會想走進去的那一種。 餐點特色
湯棧最有名的當然是它的「麻香鍋」。 用餐體驗整體氛圍比一般火鍋店更有質感。 綜合評分
地址:408臺中市南屯區公益路二段248號電話:04-22580617 官網:https://www.facebook.com/TangZhan.tw/ 小結語TANG Zhan 湯棧 把傳統火鍋做出新的樣貌保留臺式鍋物的溫度,又結合現代風格與細節服務,讓吃鍋這件事變得更有品味。 如果你想找一間兼具「好吃、好拍、好放鬆」的火鍋店,湯棧會是公益路上最有風格的選擇之一。 NINI 尼尼臺中店|明亮寬敞的義式早午餐天堂
如果說前兩間是肉食愛好者的天堂,那 NINI 尼尼臺中店 絕對是想放鬆、聊聊天的好地方。餐廳外觀以白色系與大片玻璃窗為主,陽光灑進室內,讓人一踏入就有種度假般的輕盈感。假日早午餐時段特別熱鬧,建議提早訂位。 餐點特色
NINI 的菜單融合義式與臺灣人口味,選擇多樣且份量十足。主打的 松露燉飯 濃郁卻不膩口,米芯保留微Q口感;而 香蒜海鮮義大利麵 則以新鮮白蝦、花枝與淡菜搭配微辣蒜香,口感層次豐富。 用餐體驗店內氣氛輕鬆不拘謹,無論是一個人帶電腦工作、或朋友聚餐,都能找到舒服角落。餐點上桌速度穩定,服務人員態度親切、補水與收盤都非常主動。整體節奏讓人覺得「時間變慢了」,很適合想遠離忙碌日常的人。 綜合評分
地址:40861臺中市南屯區公益路二段18號電話:04-23288498 小結語NINI 尼尼臺中店是一間能讓人放下手機、慢慢吃飯的餐廳。餐點不追求浮誇,而是以「剛剛好」的份量與風味,陪伴每個平凡午後。如果你在找一間能邊吃邊聊天、拍照也漂亮的早午餐店,NINI 會是你在公益路上最不費力的幸福選擇。 加分100%浜中特選昆布鍋物|平價卻用心的湯頭系火鍋,家庭聚餐好選擇
在公益路這條高質感餐廳林立的戰場上,加分100%浜中特選昆布鍋物 走的是截然不同的路線。它沒有浮誇的裝潢、也沒有高價位的套餐,但靠著實在的湯頭與親切的服務,默默吸引許多回頭客。每到用餐時間,總能看到家庭或情侶三兩成群地圍著鍋邊聊天。 餐點特色
主打 北海道浜中昆布湯底,湯頭清澈卻不單薄,越煮越能喝出海藻與柴魚的自然香氣。 用餐體驗整體氛圍偏家庭取向,桌距寬敞、座位舒適,帶小孩來也不覺擁擠。店員態度親切,補湯、收盤都很勤快,給人一種「被照顧著」的安心感。 綜合評分
地址:403臺中市西區公益路288號電話:0910855180 小結語加分100%浜中特選昆布鍋物是一間「不浮誇、但會讓人想再訪」的火鍋店。它不追求豪華擺盤,而是用最簡單的湯頭與新鮮食材,傳遞出家常卻不平凡的溫度。 印月餐廳|中式料理的藝術演繹,宴客與家庭聚會首選
說到臺中公益路的中式料理代表,印月餐廳 絕對是榜上有名。這間開業多年的餐廳以「中菜西吃」的概念聞名,把傳統中式料理以現代手法重新詮釋。從建築外觀到餐具擺設,每個細節都散發著低調的典雅氣息。 餐點特色
印月最令人印象深刻的是他們將傳統中菜融入創意手法。 用餐體驗服務方面完全對得起餐廳的高級定位。從入座、點餐到上菜節奏,都拿捏得恰如其分。每道菜都會有服務人員細心介紹食材與吃法,讓人感受到「被款待」的尊榮感。 綜合評分
地址:408臺中市南屯區公益路二段818號電話:0422511155 小結語印月餐廳是一間「不只吃飯,更像品味生活」的地方。 KoDō 和牛燒肉|極致職人精神,專為儀式感與頂級味覺而生
若要形容 KoDō 和牛燒肉 的用餐體驗,一句話足以總結——「像在欣賞一場關於肉的表演」。 餐點特色
這裡主打 日本A5和牛冷藏肉,以「精切厚燒」的方式呈現。 用餐體驗KoDō 的最大特色是「儀式感」。 綜合評分
地址:403臺中市西區公益路260號電話:0423220312 官網:https://www.facebook.com/kodo2018/ 小結語KoDō 和牛燒肉不是日常餐廳,而是一場體驗。 永心鳳茶|在茶香裡用餐的優雅時光,臺味早午餐的新詮釋
走進 永心鳳茶公益店,彷彿進入一間有氣質的茶館。 餐點特色
永心鳳茶的餐點結合中式靈魂與西式擺盤,無論是「炸雞腿飯」還是「紅玉紅茶拿鐵」,都能讓人感受到熟悉卻不平凡的味道。 用餐體驗店內服務人員態度溫和,對茶品介紹詳盡。上餐節奏剛好,不急不徐。 綜合評分
地址:40360臺中市西區公益路68號三樓(勤美誠品)電話:0423221118 小結語永心鳳茶讓人重新定義「臺味」。 三希樓|老饕級江浙功夫菜,穩重又帶人情味的中式饗宴
位於公益路上的 三希樓 是許多臺中老饕的口袋名單。 餐點特色
三希樓的菜色以 江浙與港式料理 為主,兼顧傳統與現代風味。 用餐體驗三希樓的服務給人一種老派但貼心的感覺。 綜合評分
地址:408臺中市南屯區公益路二段95號電話:0423202322 官網:https://www.sanxilou.com.tw/ 小結語三希樓是一間「吃得出功夫」的餐廳。 一笈壽司|低調奢華的無菜單日料,職人手藝詮釋旬味極致
在熱鬧的公益路上,一笈壽司 低調得幾乎不顯眼。 餐點特色
一笈壽司採 Omakase(無菜單料理) 形式,每一餐都由主廚根據當日食材設計。 用餐體驗整場用餐約90分鐘,節奏緩慢但沉穩。 綜合評分
地址:408臺中市南屯區公益路二段25號電話:0423206368 官網:https://www.facebook.com/YIJI.sushi/ 小結語一笈壽司是一間真正讓人「放慢呼吸」的餐廳。 茶六燒肉堂|人氣爆棚的和牛燒肉聖地,肉香與幸福感同時滿分
若要票選公益路上「最難訂位」的餐廳,茶六燒肉堂 絕對名列前茅。 餐點特色
茶六主打 和牛燒肉套餐,價格約落在 $700–$1000 間,份量與品質兼具。 用餐體驗茶六的服務效率相當高。店員親切、換網勤快、補水速度快,整場用餐流程流暢無壓力。 綜合評分
地址:403臺中市西區公益路268號電話:0423281167 官網:https://inline.app/booking/-L93VSXuz8o86ahWDRg0:inline-live-karuizawa/-LUYUEIOYwa7GCUpAFWA 小結語茶六燒肉堂用「穩定品質+輕奢氛圍」抓住了臺中年輕族群的心。 吃完10家公益路餐廳後的心得與結語吃完這十家餐廳後,臺中公益路不只是一條美食街,而是一段生活風景線。 有的餐廳講究細膩與儀式感,像 一頭牛日式燒肉 與 一笈壽司,讓人感受到食材最純粹的美好 有的則以親切與溫度打動人心,像 加分昆布鍋物、永心鳳茶,讓人明白吃飯不只是為了飽足,而是一種被照顧的幸福。 而像茶六燒肉堂、TANG Zhan 湯棧 這類人氣名店,則用穩定的品質與熱絡的氛圍,成為許多臺中人心中「想吃肉就去那裡」的代名詞。 這十家店,構成了公益路最動人的縮影 有華麗的,也有溫柔的;有傳統的,也有創新的。 每一家都在自己的風格裡發光,讓人吃到的不只是料理,而是一種生活的溫度與節奏。 對我而言,這不僅是一場美食旅程,更是一趟關於「臺中味道」的回憶之旅。 FAQ:關於臺中公益路美食常見問題Q1:公益路哪一區的餐廳最集中? Q2:需要提前訂位嗎? 最後的話若要用一句話形容這趟美食之旅,我會說: 茶六燒肉堂尾牙拍照效果好嗎? 如果你也和我一樣喜歡用味蕾探索一座城市,那就把這篇公益路美食攻略收藏起來吧。茶六燒肉堂口味偏臺式還是日式? 無論是約會、慶生、家庭聚餐,或只是想犒賞一下辛苦的自己——這條路上永遠會有一間剛剛好的餐廳在等你。一笈壽司適合多人團聚嗎? 下一餐,不妨從這10家開始。TANG Zhan 湯棧需要訂位嗎? 打開手機、約上朋友,讓公益路成為你生活裡最容易抵達的小確幸。茶六燒肉堂春酒場面夠體面嗎? 如果你有私心愛店,也歡迎留言分享,印月餐廳上餐速度快嗎? 你的推薦,可能讓我下一趟美食旅程變得更精彩。三希樓清淡口味適合嗎? A study from Northwestern Medicine reveals that an individual’s genetic makeup might influence their ability to adhere to a strict vegetarian diet. Analyzing genetic data from the UK Biobank, the study found three genes closely related to vegetarianism, with 31 others potentially associated. These findings could lead to further research, potentially impacting dietary guidelines and the development of meat substitutes. Large Study Found Three Genes Strongly Linked to Vegetarianism First fully peer-reviewed, indexed study to look at the link between strict vegetarianism and genetics More people would like to be vegetarian than actually are. ‘We think it’s because there is something hard-wired here that people may be missing’ Findings open the door to further studies that could have important implications regarding dietary recommendations and the production of meat substitutes From Impossible Burger to “Meatless Mondays,” going meat-free is certainly in vogue. However, a person’s genetic makeup plays a role in determining whether they can stick to a strict vegetarian diet, according to a new Northwestern Medicine study. The findings open the door to further studies that could have important implications regarding dietary recommendations and the production of meat substitutes. “Are all humans capable of subsisting long-term on a strict vegetarian diet? This is a question that has not been seriously studied,” said corresponding study author Dr. Nabeel Yaseen, professor emeritus of pathology at Northwestern University Feinberg School of Medicine. A large proportion (about 48 to 64%) of self-identified “vegetarians” report eating fish, poultry, and/or red meat, which Yaseen said suggests environmental or biological constraints override the desire to adhere to a vegetarian diet. “It seems there are more people who would like to be vegetarian than actually are, and we think it’s because there is something hard-wired here that people may be missing.” Several Genes Involved in Lipid Metabolism, Brain Function To determine whether genetics contribute to one’s ability to adhere to a vegetarian diet, the scientists compared UK Biobank genetic data from 5,324 strict vegetarians (consuming no fish, poultry, or red meat) to 329,455 controls. All study participants were white Caucasian to attain a homogeneous sample and avoid confounding by ethnicity. The study identified three genes that are significantly associated with vegetarianism and another 31 genes that are potentially associated. Several of these genes, including two of the top three (NPC1 and RMC1), are involved in lipid (fat) metabolism and/or brain function, the study found. “One area in which plant products differ from meat is complex lipids,” Yaseen said. “My speculation is there may be lipid component(s) present in meat that some people need. And maybe people whose genetics favor vegetarianism are able to synthesize these components endogenously. However, at this time, this is mere speculation and much more work needs to be done to understand the physiology of vegetarianism.” The study was published on October 4 in the journal PLOS ONE. It is the first fully peer-reviewed and indexed study to look at the association between genetics and strict vegetarianism. Why Do Most People Eat Meat? Religious and moral considerations have been major motivations behind adopting a vegetarian diet, and recent research has provided evidence for its health benefits. And although vegetarianism is increasing in popularity, vegetarians remain a small minority of people worldwide. For example, in the U.S., vegetarians comprise approximately 3 to 4% of the population. In the U.K., 2.3% of adults and 1.9% of children are vegetarian. This raises the question of why most people still prefer to eat meat products. The driving factor for food and drink preference is not just taste, but also how an individual’s body metabolizes it, Yaseen said. For example, when trying alcohol or coffee for the first time, most people would not find them pleasurable, but over time, one develops a taste because of how alcohol or caffeine makes them feel. “I think with meat, there’s something similar,” Yaseen said. “Perhaps you have a certain component — I’m speculating a lipid component — that makes you need it and crave it.” If genetics influence whether someone chooses to be a vegetarian, what does that mean for those who don’t eat meat for religious or moral reasons? “While religious and moral considerations certainly play a major role in the motivation to adopt a vegetarian diet, our data suggest that the ability to adhere to such a diet is constrained by genetics,” Yaseen said. “We hope that future studies will lead to a better understanding of the physiologic differences between vegetarians and non-vegetarians, thus enabling us to provide personalized dietary recommendations and to produce better meat substitutes.” Reference: “Genetics of vegetarianism: A genome-wide association study” by Nabeel R. Yaseen, Catriona L. K. Barnes, Lingwei Sun, Akiko Takeda and John P. Rice, 4 October 2023, PLOS ONE. DOI: 10.1371/journal.pone.0291305 The study, titled “Genetics of Vegetarianism: A Genome-Wide Association Study,” was conducted in collaboration with scientists from Washington University in St. Louis and Edinburgh, United Kingdom. Researchers have found that the marine fungus Parengyodontium album can break down polyethylene in the ocean when exposed to UV light, suggesting the presence of more plastic-degrading fungi in deeper waters. A plastic particle (red) is colonized by the marine fungus Parengyodontium album. Credit: Annika Vaksmaa/NIOZ Researchers found that the fungus Parengyodontium album degrades UV-exposed polyethylene in the ocean, suggesting that similar fungi might also break down plastics in deeper waters. Researchers, including those from NIOZ, have discovered that a marine fungus can decompose the plastic polyethylene after it has been exposed to UV radiation from sunlight. Their findings, published in the journal Science of the Total Environment, suggest that numerous other fungi capable of degrading plastic likely reside in the deeper regions of the ocean. The fungus Parengyodontium album lives together with other marine microbes in thin layers on plastic litter in the ocean. Marine microbiologists from the Royal Netherlands Institute for Sea Research (NIOZ) discovered that the fungus is capable of breaking down particles of the plastic polyethylene (PE), the most abundant of all plastics that have ended up in the ocean. The NIOZ researchers cooperated with colleagues from Utrecht University, the Ocean Cleanup Foundation and research institutes in Paris, Copenhagen, and St Gallen, Switzerland. The finding allows the fungus to join a very short list of plastic-degrading marine fungi: only four species have been found to date. A larger number of bacteria were already known to be able to degrade plastic. Follow the degradation process accurately The researchers went to find the plastic-degrading microbes in the hotspots of plastic pollution in the North Pacific Ocean. From the plastic litter collected, they isolated the marine fungus by growing it in the laboratory, on special plastics that contain labeled carbon. Vaksmaa: “These so-called 13C isotopes remain traceable in the food chain. It is like a tag that enables us to follow where the carbon goes. We can then trace it in the degradation products.” Vaksmaa is thrilled about the new finding: “What makes this research scientifically outstanding, is that we can quantify the degradation process.” In the laboratory, Vaksmaa and her team observed that the breakdown of PE by P. album occurs at a rate of about 0.05 percent per day. “Our measurements also showed that the fungus doesn’t use much of the carbon coming from the PE when breaking it down. Most of the PE that P. album uses is converted into carbon dioxide, which the fungus excretes again.” Although CO2 is a greenhouse gas, this process is not something that might pose a new problem: the amount released by fungi is the same as the low amount humans release while breathing. Only under the influence of UV The presence of sunlight is essential for the fungus to use PE as an energy source, the researchers found. Vaksmaa: “In the lab, P. album only breaks down PE that has been exposed to UV-light at least for a short period of time. That means that in the ocean, the fungus can only degrade plastic that has been floating near the surface initially,” explains Vaksmaa. “It was already known that UV-light breaks down plastic by itself mechanically, but our results show that it also facilitates the biological plastic breakdown by marine fungi.” Other fungi out there As a large amount of different plastics sink into deeper layers before it is exposed to sunlight, P.album will not be able to break them all down. Vaksmaa expects that there are other, yet unknown, fungi out there that are degrading plastic as well, in deeper parts of the ocean. “Marine fungi can break down complex materials made of carbon. There are numerous amounts of marine fungi, so it is likely that in addition to the four species identified so far, other species also contribute to plastic degradation. There are still many questions about the dynamics of how plastic degradation takes place in deeper layers,” says Vaksmaa. Plastic soup Finding plastic-degrading organisms is urgent. Every year, humans produce more than 400 billion kilograms of plastic, and this is expected to have at least triple by the year 2060. Much of the plastic waste ends up in the sea: from the poles to the tropics, it floats around in surface waters, reaches greater depths at sea, and eventually falls down on the seafloor. Lead author Annika Vaksmaa of NIOZ: “Large amounts of plastics end up in subtropical gyres, ring-shaped currents in oceans in which seawater is almost stationary. That means once the plastic has been carried there, it gets trapped there. Some 80 million kilograms of floating plastic have already accumulated in the North Pacific Subtropical Gyre in the Pacific Ocean alone, which is only one of the six large gyres worldwide.” Reference: “Biodegradation of polyethylene by the marine fungus Parengyodontium album” by A. Vaksmaa, H. Vielfaure, L. Polerecky, M.V.M. Kienhuis, M.T.J. van der Meer, T. Pflüger, M. Egger and H. Niemann, 26 April 2024, Science of The Total Environment. DOI: 10.1016/j.scitotenv.2024.172819 The blue color of blueberries comes from tiny structures in their wax coating, not from pigments in the fruit skin, according to a University of Bristol study. This discovery opens up possibilities for sustainable and biocompatible colorants and coatings inspired by nature. Researchers at the University of Bristol have discovered that tiny external structures within the wax coating of blueberries are responsible for their blue color. This applies to lots of fruits that are the same color including damsons, sloes, and juniper berries. In the study, published today in Science Advances, researchers show why blueberries are blue despite the dark red color of the pigments in the fruit skin. Their blue color is instead provided by a layer of wax that surrounds the fruit which is made up of miniature structures that scatter blue and UV light. This gives blueberries their blue appearance to humans and blue-UV to birds. The chromatic blue-UV reflectance arises from the interaction of the randomly arranged crystal structures of the epicuticular wax with light. Unveiling Nature’s Color Tricks Rox Middleton, Research Fellow at Bristol’s School of Biological Sciences, explained: “The blue of blueberries can’t be ‘extracted’ by squishing – because it isn’t located in the pigmented juice that can be squeezed from the fruit. That was why we knew that there must be something strange about the color. “So we removed the wax and re-crystallized it on a card and in doing so we were able to create a brand new blue-UV coating.” The ultra-thin colorant is around two microns thick, and although less reflective, it’s visibly blue and reflects UV well, possibly paving the way for new colorant methods. Diagram showing how wax structure reflect light. Credit: Rox Middleton “It shows that nature has evolved to use a really neat trick, an ultrathin layer for an important colorant,” added Rox. Most plants are coated in a thin layer of wax which has multiple functions, many of which scientists still don’t understand. They know that it can be very effective as a hydrophobic, self-cleaning coating, but it’s only now they realize how important the structure is for visible coloration. Potential Applications and Future Research Now the team plans to look at easier ways of recreating the coating and applying it. This could lead to a more sustainable, biocompatible, and even edible UV and blue-reflective paint. Furthermore, these coatings could have the same multiple functions as natural biological ones that protect plants. Rox added: “It was really interesting to find that there was an unknown coloration mechanism right under our noses, on popular fruits that we grow and eat all the time. “It was even more exciting to be able to reproduce that color by harvesting the wax to make a new blue coating that no one’s seen before. “Building all that functionality of this natural wax into artificially engineered materials is the dream!” Reference: “Self-assembled, disordered structural color from fruit wax bloom” by Rox Middleton, Sverre Aarseth Tunstad, Andre Knapp, Sandra Winters, Susan McCallum and Heather Whitney, 7 February 2024, Science Advances. DOI: 10.1126/sciadv.adk4219 RRG455KLJIEVEWWF 三希樓春酒場面夠體面嗎? 》公益路必吃Top10|美食路線一次規劃好一笈壽司網路評價符合期待嗎? 》公益路10家必訪餐廳|吃貨必備指南一笈壽司尾牙聚餐表現如何? 》台中公益路隱藏美食推薦|10家真實體驗分享 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 最新創作 |
|
||||
|
||||
|
||||
|
||||
|
||||



























