|
|
文章數:416 |
NINI 尼尼台中店慶生氣氛夠嗎? 》台中公益路必吃清單|10家熱門餐廳完整評測 |
| 興趣嗜好|商業管理 2025/11/27 06:08:25 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
身為一個熱愛美食、喜歡在城市裡挖掘驚喜的人,臺中公益路一直是我最常出沒的地方之一。這條路可說是「臺中人的美食戰場」,從精緻西餐到創意火鍋,從日式丼飯到義式早午餐,每走幾步,就會有完全不同的特色料理餐廳。 這次我特別花了一整個月,實際造訪了公益路上十間口碑不錯的餐廳。有的是網友熱推的打卡名店,也有隱藏在巷弄裡的小驚喜。我以環境氛圍、口味表現、價格CP值與再訪意願為基準,整理出這篇實測評比。希望能幫正在猶豫去哪裡吃飯的你,找到那一間「吃完會想再來」的餐廳。 評比標準與整理方向
這次我走訪的10家餐廳橫跨不同料理類型,從高質感牛排館到巷弄系早午餐,每一間都有自己獨特的風格。為了讓整體比較更客觀,我依照以下四大面向進行評比,並搭配實際用餐體驗來打分。
整體而言,我希望這份評比不只是「哪家好吃」,而是幫你在不同情境下(約會、家庭聚餐、朋友小聚、商業午餐)都能快速找到合適的選擇。畢竟,美食不只是味覺的滿足,更是一段段與朋友共享的生活記憶。 10間臺中公益路餐廳評比懶人包公益路向來是臺中人聚餐的首選地段,從火鍋、燒肉到中式料理與早午餐,每走幾步就有驚喜。以下是我實際造訪過的10間代表性餐廳清單,橫跨平價、創意、高級各路風格。
一頭牛日式燒肉|炭香濃郁的和牛饗宴,約會聚餐首選
走在公益路上,很難不被 一頭牛日式燒肉 的木質外觀吸引。低調卻不失質感的門面,搭配昏黃燈光與暖色調的內裝,讓人一進門就感受到濃濃的日式職人氛圍。店內空間不大,但桌距規劃得宜,每桌皆設有獨立排煙設備,烤肉時完全不怕滿身油煙味。 餐點特色
一頭牛的靈魂,絕對是他們招牌的「三國和牛拼盤」。 用餐體驗整體節奏掌握得非常好。店員會在你剛想烤下一片肉時貼心遞上夾子、幫忙換烤網,讓人完全不用分心。整場用餐過程就像一場表演,從視覺、嗅覺到味覺都被滿足。 綜合評分
地址:408臺中市南屯區公益路二段162號電話:04-23206800 官網:http://www.marihuana.com.tw/yakiniku/index.html 小結語一頭牛日式燒肉不僅是「吃肉的地方」,更像是一場五感盛宴。從進門那一刻到最後一道甜點,都能感受到他們對細節的用心。 TANG Zhan 湯棧|文青系火鍋代表,麻香湯底與視覺美感並重
在公益路這條美食戰線上,TANG Zhan 湯棧 是讓人一眼就會想走進去的那一種。 餐點特色
湯棧最有名的當然是它的「麻香鍋」。 用餐體驗整體氛圍比一般火鍋店更有質感。 綜合評分
地址:408臺中市南屯區公益路二段248號電話:04-22580617 官網:https://www.facebook.com/TangZhan.tw/ 小結語TANG Zhan 湯棧 把傳統火鍋做出新的樣貌保留臺式鍋物的溫度,又結合現代風格與細節服務,讓吃鍋這件事變得更有品味。 如果你想找一間兼具「好吃、好拍、好放鬆」的火鍋店,湯棧會是公益路上最有風格的選擇之一。 NINI 尼尼臺中店|明亮寬敞的義式早午餐天堂
如果說前兩間是肉食愛好者的天堂,那 NINI 尼尼臺中店 絕對是想放鬆、聊聊天的好地方。餐廳外觀以白色系與大片玻璃窗為主,陽光灑進室內,讓人一踏入就有種度假般的輕盈感。假日早午餐時段特別熱鬧,建議提早訂位。 餐點特色
NINI 的菜單融合義式與臺灣人口味,選擇多樣且份量十足。主打的 松露燉飯 濃郁卻不膩口,米芯保留微Q口感;而 香蒜海鮮義大利麵 則以新鮮白蝦、花枝與淡菜搭配微辣蒜香,口感層次豐富。 用餐體驗店內氣氛輕鬆不拘謹,無論是一個人帶電腦工作、或朋友聚餐,都能找到舒服角落。餐點上桌速度穩定,服務人員態度親切、補水與收盤都非常主動。整體節奏讓人覺得「時間變慢了」,很適合想遠離忙碌日常的人。 綜合評分
地址:40861臺中市南屯區公益路二段18號電話:04-23288498 小結語NINI 尼尼臺中店是一間能讓人放下手機、慢慢吃飯的餐廳。餐點不追求浮誇,而是以「剛剛好」的份量與風味,陪伴每個平凡午後。如果你在找一間能邊吃邊聊天、拍照也漂亮的早午餐店,NINI 會是你在公益路上最不費力的幸福選擇。 加分100%浜中特選昆布鍋物|平價卻用心的湯頭系火鍋,家庭聚餐好選擇
在公益路這條高質感餐廳林立的戰場上,加分100%浜中特選昆布鍋物 走的是截然不同的路線。它沒有浮誇的裝潢、也沒有高價位的套餐,但靠著實在的湯頭與親切的服務,默默吸引許多回頭客。每到用餐時間,總能看到家庭或情侶三兩成群地圍著鍋邊聊天。 餐點特色
主打 北海道浜中昆布湯底,湯頭清澈卻不單薄,越煮越能喝出海藻與柴魚的自然香氣。 用餐體驗整體氛圍偏家庭取向,桌距寬敞、座位舒適,帶小孩來也不覺擁擠。店員態度親切,補湯、收盤都很勤快,給人一種「被照顧著」的安心感。 綜合評分
地址:403臺中市西區公益路288號電話:0910855180 小結語加分100%浜中特選昆布鍋物是一間「不浮誇、但會讓人想再訪」的火鍋店。它不追求豪華擺盤,而是用最簡單的湯頭與新鮮食材,傳遞出家常卻不平凡的溫度。 印月餐廳|中式料理的藝術演繹,宴客與家庭聚會首選
說到臺中公益路的中式料理代表,印月餐廳 絕對是榜上有名。這間開業多年的餐廳以「中菜西吃」的概念聞名,把傳統中式料理以現代手法重新詮釋。從建築外觀到餐具擺設,每個細節都散發著低調的典雅氣息。 餐點特色
印月最令人印象深刻的是他們將傳統中菜融入創意手法。 用餐體驗服務方面完全對得起餐廳的高級定位。從入座、點餐到上菜節奏,都拿捏得恰如其分。每道菜都會有服務人員細心介紹食材與吃法,讓人感受到「被款待」的尊榮感。 綜合評分
地址:408臺中市南屯區公益路二段818號電話:0422511155 小結語印月餐廳是一間「不只吃飯,更像品味生活」的地方。 KoDō 和牛燒肉|極致職人精神,專為儀式感與頂級味覺而生
若要形容 KoDō 和牛燒肉 的用餐體驗,一句話足以總結——「像在欣賞一場關於肉的表演」。 餐點特色
這裡主打 日本A5和牛冷藏肉,以「精切厚燒」的方式呈現。 用餐體驗KoDō 的最大特色是「儀式感」。 綜合評分
地址:403臺中市西區公益路260號電話:0423220312 官網:https://www.facebook.com/kodo2018/ 小結語KoDō 和牛燒肉不是日常餐廳,而是一場體驗。 永心鳳茶|在茶香裡用餐的優雅時光,臺味早午餐的新詮釋
走進 永心鳳茶公益店,彷彿進入一間有氣質的茶館。 餐點特色
永心鳳茶的餐點結合中式靈魂與西式擺盤,無論是「炸雞腿飯」還是「紅玉紅茶拿鐵」,都能讓人感受到熟悉卻不平凡的味道。 用餐體驗店內服務人員態度溫和,對茶品介紹詳盡。上餐節奏剛好,不急不徐。 綜合評分
地址:40360臺中市西區公益路68號三樓(勤美誠品)電話:0423221118 小結語永心鳳茶讓人重新定義「臺味」。 三希樓|老饕級江浙功夫菜,穩重又帶人情味的中式饗宴
位於公益路上的 三希樓 是許多臺中老饕的口袋名單。 餐點特色
三希樓的菜色以 江浙與港式料理 為主,兼顧傳統與現代風味。 用餐體驗三希樓的服務給人一種老派但貼心的感覺。 綜合評分
地址:408臺中市南屯區公益路二段95號電話:0423202322 官網:https://www.sanxilou.com.tw/ 小結語三希樓是一間「吃得出功夫」的餐廳。 一笈壽司|低調奢華的無菜單日料,職人手藝詮釋旬味極致
在熱鬧的公益路上,一笈壽司 低調得幾乎不顯眼。 餐點特色
一笈壽司採 Omakase(無菜單料理) 形式,每一餐都由主廚根據當日食材設計。 用餐體驗整場用餐約90分鐘,節奏緩慢但沉穩。 綜合評分
地址:408臺中市南屯區公益路二段25號電話:0423206368 官網:https://www.facebook.com/YIJI.sushi/ 小結語一笈壽司是一間真正讓人「放慢呼吸」的餐廳。 茶六燒肉堂|人氣爆棚的和牛燒肉聖地,肉香與幸福感同時滿分
若要票選公益路上「最難訂位」的餐廳,茶六燒肉堂 絕對名列前茅。 餐點特色
茶六主打 和牛燒肉套餐,價格約落在 $700–$1000 間,份量與品質兼具。 用餐體驗茶六的服務效率相當高。店員親切、換網勤快、補水速度快,整場用餐流程流暢無壓力。 綜合評分
地址:403臺中市西區公益路268號電話:0423281167 官網:https://inline.app/booking/-L93VSXuz8o86ahWDRg0:inline-live-karuizawa/-LUYUEIOYwa7GCUpAFWA 小結語茶六燒肉堂用「穩定品質+輕奢氛圍」抓住了臺中年輕族群的心。 吃完10家公益路餐廳後的心得與結語吃完這十家餐廳後,臺中公益路不只是一條美食街,而是一段生活風景線。 有的餐廳講究細膩與儀式感,像 一頭牛日式燒肉 與 一笈壽司,讓人感受到食材最純粹的美好 有的則以親切與溫度打動人心,像 加分昆布鍋物、永心鳳茶,讓人明白吃飯不只是為了飽足,而是一種被照顧的幸福。 而像茶六燒肉堂、TANG Zhan 湯棧 這類人氣名店,則用穩定的品質與熱絡的氛圍,成為許多臺中人心中「想吃肉就去那裡」的代名詞。 這十家店,構成了公益路最動人的縮影 有華麗的,也有溫柔的;有傳統的,也有創新的。 每一家都在自己的風格裡發光,讓人吃到的不只是料理,而是一種生活的溫度與節奏。 對我而言,這不僅是一場美食旅程,更是一趟關於「臺中味道」的回憶之旅。 FAQ:關於臺中公益路美食常見問題Q1:公益路哪一區的餐廳最集中? Q2:需要提前訂位嗎? 最後的話若要用一句話形容這趟美食之旅,我會說: 茶六燒肉堂婚前派對適合嗎? 如果你也和我一樣喜歡用味蕾探索一座城市,那就把這篇公益路美食攻略收藏起來吧。NINI 尼尼臺中店用餐時間會不會太短? 無論是約會、慶生、家庭聚餐,或只是想犒賞一下辛苦的自己——這條路上永遠會有一間剛剛好的餐廳在等你。永心鳳茶大型聚餐空間夠不夠? 下一餐,不妨從這10家開始。KoDō 和牛燒肉適合聚餐嗎? 打開手機、約上朋友,讓公益路成為你生活裡最容易抵達的小確幸。TANG Zhan 湯棧海鮮表現如何? 如果你有私心愛店,也歡迎留言分享,TANG Zhan 湯棧有雷嗎? 你的推薦,可能讓我下一趟美食旅程變得更精彩。TANG Zhan 湯棧小資族值得嗎? The NLRP3 inflammasome, vital to the human immune system, is also linked to various diseases. Its core component, the ASC protein, forms a dense structure that was previously difficult to analyze. A recent study by an international team, using innovative fluorescence microscopy techniques, has successfully visualized the 3D structure of the ASC speck, resolving long-standing controversies and marking a significant advancement in the understanding of inflammasome biology. Credit: SciTechDaily.com A new study has unveiled the detailed structure of the NLRP3 inflammasome, crucial for immune response and disease research, using innovative imaging techniques. A central component of the human immune system, the NLRP3 inflammasome plays an important role in fighting off infections. However, its chronic activation is also implicated in a variety of common diseases, such as Alzheimer’s, Parkinson’s, multiple sclerosis, atherosclerosis, gout, and type II diabetes. The NLRP3 inflammasome occurs primarily in specialized immune cells in the blood and elsewhere. It is a dense complex in which several proteins interact with each other. A key protein in this complex is known by the abbreviation ASC. In non-activated immune cells, it is distributed homogeneously throughout the cell. If the NLRP3 inflammasome is activated, all of the ASC protein present in the cell aggregates in the inflammasome complex. Under an ordinary fluorescence microscope, the ASC protein, once labeled, appears as a single, bright, nearly round spot. Due to the small size and high density of this ASC speck, scientists have been unable to elucidate details of its structure inside cells. Different models were proposed in the scientific literature but a comprehensive understanding was missing. Endogenous ASC speck imaged in 3D by dSTORM. The ASC speck is a central component of the NLRP3 inflammasome. Credit: © Science An international team of researchers, including the research groups of LMU professors Don Lamb, Ralf Jungmann, and Veit Hornung, has now visualized the 3D structure of the ASC speck inside cells using various fluorescence microscopy methods. Recently published in the journal iScience, their study shows that the ASC speck has an amorphous structure with a dense core from which filaments reach out into the periphery. To be able to fully label and image the structure, the researchers had to combine two different approaches. They labeled the less dense periphery of the ASC speck with antibodies and the dense interior with nanobodies. “This is a paramount example of modern, interdisciplinary research, which has yielded important insights for several fields.” Don C. Lamb “When we used just one of the labeling methods, it led to artifacts and thus to data that would be falsely interpreted,” says Professor Christian Sieben from the Helmholtz Centre for Infection Research in Braunschweig. “By combining the two approaches, we could overcome this limitation” adds Lamb. This is an important insight for the imaging of dense structures with high-resolution fluorescence microscopy in general. An elegant analysis of the microscopy images of a large number of ASC specks also indicates that as the ASC protein accumulates within the speck, the speck scarcely grows at all, but primarily becomes denser. “Our results solve the existing controversies in relation to the structure of the ASC speck and are an important step on the road to the complete visualization of the inflammasome in cells,” says Dr. Ivo Glück, first author of the new study. “These results could only have been achieved by an international collaboration of leading researchers in the fields of fluorescence microscopy and inflammasome biology. It is a paramount example of modern, interdisciplinary research, which has yielded important insights for several fields,” adds Lamb. Reference: “Nanoscale organization of the endogenous ASC speck” by Ivo M. Glück, Grusha Primal Mathias, Sebastian Strauss, Virgile Rat, Irene Gialdini, Thomas Sebastian Ebert, Che Stafford, Ganesh Agam, Suliana Manley, Veit Hornung, Ralf Jungmann, Christian Sieben and Don C. Lamb, 3 November 2023, iScience. DOI: 10.1016/j.isci.2023.108382 A new study clarifies past conflicting observations on visual recognition memory (VRM), showing that increased visual evoked potentials (VEPs) during the recognition of familiar stimuli signal the brain’s rapid identification process, ultimately leading to decreased overall neural activity. New research clarifies how the brain recognizes familiar stimuli by identifying a brief spike in neural activity (VEP) followed by overall suppression. Since determining what we observe as new or familiar is essential for prioritizing our attention, neuroscientists have dedicated years to understanding why our brains excel at this task. During their research, they have encountered seemingly conflicting findings. However, a recent study reveals that these perplexing results are really two sides of the same coin, paving the way for a long-sought understanding of “visual recognition memory” (VRM). VRM is the ability to quickly recognize the familiar things in scenes, which can then be de-prioritized so that we can focus on the new things that might be more important in a given moment. Imagine you walk into your home office one evening to respond to an urgent, late email. There you see all the usual furniture and equipment—and a burglar. VRM helps ensure that you’d focus on the burglar, not your bookshelves or your desk lamp. Data from the paper show a sharp but brief increase in neural activity — a visually evokied potential — when a stimulus pattern is shown to a mouse at about 80 milliseconds (bright orange vertical line). Notably when a stimulus is familiar, activity decreases significantly (cooler colors) after that transient increase. Credit: Bear Lab/MIT Picower Institute “Yet we do not yet have a clear picture of how this foundational form of learning is implemented within the mammalian brain,” wrote Picower Professor Mark Bear and fellow authors of the new study in the Journal of Neuroscience. As far back as 1991 researchers found that when animals viewed something familiar, neurons in the cortex, or the outer layer of their brain, would be less activated than if they saw something new (two of that study’s authors later became Bear’s colleagues at MIT, Picower Professor Earl K. Miller and Doris and Don Berkey Professor Bob Desimone). But in 2003, Bear’s lab happened to observe the opposite: Mice would actually show a sharp jump in neural activity in the primary visual region of the cortex when a familiar stimulus was flashed in front of the animal. This spike of activity is called a “visually evoked potential” (VEP), and Bear’s lab has since shown that increases in the VEPs are solid indicators of VRM. The findings in the new study, led by former Bear Lab postdocs Dustin Hayden and Peter Finnie, explain how VEPs increase even amid an overall decline in neural response to familiar stimuli (as seen by Miller and Desimone), Bear said. They also explain more about the mechanisms underlying VRM – the momentary increase of a VEP may be excitation that recruits inhibition, thereby suppressing activity overall. New Understanding Bear’s lab evokes VEPs by showing mice a black-and-white striped grating in which the stripes periodically switch their shade so that the pattern appears to reverse. Over several days as mice view this stimulus pattern, the VEPs increase, a reliable correlate of the mice becoming familiar with—and less interested in—the pattern. For 20 years Bear’s lab has been investigating how the synapses involved in VRM change by studying a phenomenon they’ve dubbed “stimulus-selective response plasticity” (SRP). Early studies suggested that SRP occurs among excitatory neurons in layer 4 of the visual cortex and specifically might require the molecular activation of their NMDA receptors. The lab had seen that knocking out the receptors across the visual cortex prevented the increase in VEPs and therefore SRP, but a follow-up in 2019 found that knocking them out just in layer 4 had no effect. So, in the new study, they decided to study VEPs, SRP, and VRM across the whole visual cortex, layer by layer, in search of how it all works. What they found was that many of the hallmarks of VRM, including VEPs, occur in all layers of the cortex but that it seemed to depend on NMDA receptors on a population of excitatory neurons in layer 6, not layer 4. This is an intriguing finding, the authors said, because those neurons are well connected to the thalamus (a deeper brain region that relays sensory information) and to inhibitory neurons in layer 4, where they had first measured VEPs. They also measured changes in brain waves in each layer that confirmed a previous finding that when the stimulus pattern is new, the prevailing brain wave oscillations are in a higher “gamma” frequency that depends on one kind of inhibitory neuron, but as it becomes more familiar, the oscillations shift toward a lower “beta” frequency that depends on a different inhibitory population. A Short Spike Amid a Long Lull The team’s rigorous and precise electrophysiology recordings of neural electrical activity in the different layers also revealed a potential resolution to the contradiction between VEPs and the measures of labs like that of Miller and Desimone. “What this paper reveals is that everybody is right,” Bear quipped. How so? The new data show that VEPs are very pronounced but transient spikes of neural electrical activity that occur amid a broader, overall lull of activity. Previous studies have reflected only the overall decrease because they have not had the temporal resolution to detect the brief spike. Bear’s team, meanwhile, has seen the VEPs for years but didn’t necessarily focus on the surrounding lull. The new evidence suggests that what’s happening is that VEP is a sign of the activity of the brain quickly recognizing a familiar stimulus and then triggering an inhibition of activity related to it. “What I think is exciting about this is that it suddenly sheds light on the mechanism, because it’s not that the encoding of familiarity is explained by the depression of excitatory synapses,” Bear said. “Rather, it seems to be accounted for by the potentiation of excitatory synapses on to neurons that then recruit inhibition in the cortex.” Even as it advances that understanding of how VRM arises, the study still leaves open questions including the exact circuits involved. For instance, the exact contribution of the layer 6 circuit neurons is not yet clear, Bear said. And so, the quest goes on. Reference: “Electrophysiological signatures of visual recognition memory across all layers of mouse V1” by Dustin J. Hayden, Peter S.B. Finnie, Aurore Thomazeau, Alyssa Y. Li, Samuel F. Cooke and Mark F. Bear, 15 September 2023, JNeurosci. DOI: 10.1523/JNEUROSCI.0090-23.2023 In addition to Hayden, Finnie, and Bear, the paper’s other authors are Aurore Thomazeau, Alyssa Li, and Samuel Cooke. The National Eye Institute of the National Institutes of Health, The Picower Institute for Learning and Memory, and The JPB Foundation funded the study. Researchers at NTNU’s Department of Biotechnology and Food Science are breeding bacteria-free fish fry, studying their growth, genes, and mucous membranes to understand the interaction between bacteria and fish. This could eventually lead to methods to prevent fish from getting ill, benefiting the fishing industry and our future food supply. Bacteria-free fish fry put scientists on the track to make fish more disease resistant. Researchers, including those from NTNU, are breeding bacteria-free fish fry. This is more important than you think. “We’re managing to keep the fry bacteria-free for up to 12 weeks after the eggs hatch,” says Ingrid Bakke. She is a professor at NTNU’s Department of Biotechnology and Food Science. This development has provided researchers with valuable insights into the relationship between bacteria and fish. Gaining a deeper understanding of their interactions may eventually lead to methods for preventing fish from falling ill. Although still a distant prospect, this could have profound implications for the fishing industry, future food security, and the wellbeing of fish themselves. The researchers have studied how bacteria affect the growth, genes, and mucous membranes of the fish. But first a little about the bacteria in your body. Researchers at the Norwegian University of Science and Technology (NTNU) have been able to keep salmon fry bacteria free for as long as 12 weeks after they have hatched. These bacteria-free fry help researchers understand how bacteria affect young fish, with the goal of helping farmed fish to be healthier. Credit: Alexander Fiedler, NTNU Trillions of Bacteria Bacteria obviously affect our health, but not only in a negative way. As long as we are inside our mother’s womb, we live protected and perhaps even germ-free, but that ends as soon as we are born. A human body normally contains many trillions of bacteria – that’s a number followed by 15 zeros. The same applies to other living organisms. “Many of our bacteria are necessary for the human body to function. They’re necessary for the development of our immune system, and they contribute to digestion and increase the energy value of the food we eat. They protect against disease bacteria and produce vitamins that we need,” says Bakke. All these functions and more help us to understand the importance of finding out more about how our bacterial friends work. So how do researchers go about doing this research? Researchers from the Norwegian University of Science and Technology (NTNU) are culturing salmon fry in a bacteria-free environment so they can later expose the fish to different kinds of bacteria to see what happens to the young fish. Credit: Alexander Fiedler Knowledge From Model Systems “A lot of what we know about how bacteria affect the host organism comes from experiments with model systems,” says Bakke. What does that actually mean? Model systems are living organisms that are easy to work with when studying biological processes. Most often, these species are easy to breed, cheap to maintain, have a reasonably long life cycle, and have genetic traits that are easy to manipulate and other favorable features. The specific characteristics researchers look for mostly depend on what they want to study. Zebrafish, banana flies, and different kinds of mice and rats are among the most well-known species used as model systems. Bakke and her colleagues have chosen a different species this time: Atlantic salmon. Bacteria-Free Salmon Fry Salmon fry go through a stage where they live with a pouch called a yolk sac. This yolk sac supplies nutrition for the fry. “We’ve come up with a model system where we can keep the yolk sac of the salmon fry bacteria-free throughout the 12-week yolk sac phase,” says Bakke. Fish are normally bacteria-free in the egg phase, but are colonized by bacteria as soon as they hatch. In contrast to all other salmon, these bred fry have no natural bacterial community. The researchers breed the fish in a protected, germ-free environment, a standard method for making bacteria-free salmon fry. The research group has come up with an efficient and effective method that works for salmon eggs and fry. “We surface treat the fish eggs to keep them bacteria-free and keep the eggs, and later the fry, in bacteria-free water,” says Bakke. Knowing how to create bacteria-free fry is necessary for the group to research them afterward. Salmon Are Like Blank Slates The bacteria-free fry becomes almost like a kind of blank slate where the researchers can add the bacteria they want and then see exactly what happens, without interference from unknown bacteria. “Bacteria-free model systems are generally important for understanding interactions between the bacteria and host,” says Bakke. “An example would be understanding how gut microbiota affect development and health in humans and other mammals.” The microbiota consists of all the microorganisms found in our whole body or parts of our body. “We can use bacteria and bacterial communities that we define, and investigate how both the host and bacteria are affected by living together,” says Bakke. For example, the researchers can investigate which factors control the composition of bacterial flora in the fry. The researchers may then be able to influence the bacterial composition in the fish to avoid negative effects, or they can introduce good effects instead. Salmon Fry Well Suited for Research Zebrafish have been widely used as a model system in this context. But salmon fry have some characteristics that make them particularly suitable. “We have large and well-developed fry, which makes them easier to study,” says Bakke. The fry phase is long enough for the researchers to carry out several types of experiments. Since the fry obtain their nutrition from the yolk sac, the researchers don’t need to add fish feed that could contain microorganisms that disturb the research results. As a bonus, the fry are nice to look at. Bacteria Found To Affect Skin Mucus Layer in Salmon To date, the researchers have published one article about their findings, but there are more to come. In the first article, they show that bacteria affect the protective skin mucus layer in the fish. “The salmon have a protective mucus layer on the surface of their body. It appears that the composition of bacteria might affect the properties of this mucus layer,” says Bakke. The fry that were not exposed to bacteria developed a thinner mucus layer on the outside of their bodies than the fry that were exposed to the researchers’ specially selected bacteria, or bacteria from a lake. The bacteria can also affect the fat reserves of the fish. The fry that received bacteria from a lake developed greater fat reserves. “We needed interdisciplinary expertise to study the effect of bacteria on the fish’s mucus layer. Researcher Sol Gómez de la Torre Canny was key in developing the germ-free model system with yolk sac fry,” says Bakke. Researcher Catherine Taylor Nordgård, who is an expert in rheology, characterized the properties of the mucus layer that covers the fish. Opens the Door To Treat Fish The goal of the researchers is to understand which mechanisms affect the composition of the bacterial communities that colonize the fish immediately after hatching. “We’re looking at how the bacterial communities possibly protect against bacterial infections, and whether it’s possible to influence the early bacterial colonization of fry,” Bakke says. Enabling such probiotic treatment would mean that researchers could add live microorganisms to the fish to achieve beneficial effects, such as better health and growth. “But probiotic treatment on a large scale is still a long way off,” says Bakke. Reference: “A novel gnotobiotic experimental system for Atlantic salmon (Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage” by Sol Gómez de la Torre Canny, Catherine Taylor Nordgård, Amalie Johanne Horn Mathisen, Eirik Degré Lorentsen, Olav Vadstein and Ingrid Bakke, 1 February 2023, Frontiers in Cellular and Infection Microbiology. DOI: 10.3389/fcimb.2022.1068302 The Norwegian product Stembiont is already available. This is a probiotic product intended for larger fish. More research is needed for probiotic use on a larger scale. The research is being financed by the Research Council of Norway through FRIPRO funding. RRG455KLJIEVEWWF 印月餐廳甜點好吃嗎? 》台中公益路真的好吃嗎?10家餐廳真實評比NINI 尼尼台中店肉質如何? 》台中公益路必吃清單|10家熱門餐廳完整評測印月餐廳適合多人團聚嗎? 》台中公益路美食攻略|精選10間超人氣餐廳,一次帶你吃遍熱門口袋名單 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 最新創作 |
|
||||
|
||||
|
||||
|
||||
|
||||



























