![]() ![]() |
![]() |
文章數:15 |
![]() |
在地生活|自然園藝 2025/05/06 03:41:25 | |
Introduction – Company BackgroundGuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles. With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design. With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear. From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs. At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices. By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals. Core Strengths in Insole ManufacturingAt GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs. Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products. We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility. With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business. Customization & OEM/ODM FlexibilityGuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality. Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation. With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition. Quality Assurance & CertificationsQuality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability. We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets. Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments. ESG-Oriented Sustainable ProductionAt GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact. To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain. We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future. Let’s Build Your Next Insole Success TogetherLooking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals. From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value. Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability. 🔗 Learn more or get in touch: Vietnam graphene material ODM solution Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design. With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Vietnam orthopedic insole OEM manufacturer Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values. We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.High-performance insole OEM Indonesia At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Orthopedic pillow OEM solutions Taiwan 📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Taiwan neck support pillow OEM factory Optimizing crops through genome editing may require inventorying duplicated genes. Crop developers need to understand how important genes were duplicated, deleted, and changed over evolutionary time. This allows scientists to develop more predictable crop improvements. Study shows that duplicated genes can complicate crop gene editing, leading to unpredictable outcomes, as seen with the clv3 gene in nightshade plants. When plant geneticists find a gene that improves crop yields, they want to try to insert that same change into other crops. But Cold Spring Harbor Laboratory Professor and HHMI Investigator Zachary Lippman cautions that just knowing what a single gene does is not enough. He discovered that it pays to know what other closely related genes might be lurking in the genome to block a hoped-for improvement. In research reported in Nature Plants, Lippman, former postdoc Cao Xu (now at the Chinese Academy of Sciences in Beijing), and colleagues demonstrate how duplicated genes in plant genomes complicate a crop developer’s plans. Gene duplications are common in plants. Many act as “back-up copies” of the original gene. But based on his team’s surprising findings, Lippman says that having a great candidate for gene editing is not enough to predict the outcome of planned changes, “The lack of predictability in the context of a duplicate gene really needs to be an eye-opener for designing crop improvements.” Tweaking one plant gene can increase desirable traits, but changing the same gene in another type of plant may not yield the same result. A tobacco plant with a mutation engineered in the clv3 gene makes larger and more numerous stems, branches, and flower tissues. CSHL researchers discovered the same mutation in evolutionarily-related plants produces different effects. Credit: Choon-Tak Kwon/Lippman lab/CSHL, 2022 The Case Study of the clv3 Gene The group studied the gene clv3. This gene produces a protein that limits the growth of developing plant tissues. Mutations in clv3 have led to higher yields in many domestic plants. In tomatoes, for example, mutations in clv3 are associated with larger fruits with more seed sections. Lippman’s team introduced equivalent mutations into the clv3 gene in tomato, tobacco, ground cherry, and petunia plants. All four plants are members of the Solanaceae family, also known as nightshades. Lippman and his colleagues expected to see similar results but what he found was intriguing. In tobacco, the effects were dramatic, doubling the size of certain growth regions. This change was due to the plant’s loss of the clv3 back-up gene. In tomato, the duplicated gene partially buffers clv3 mutations, so effects were more moderate. In ground cherry and petunia, mutating clv3 had little effect. Both plants had clv3-like genes that compensated for the changes made by the researchers to the clv3 gene. To Lippman, the lesson is that optimizing crops through genome editing may require taking an inventory of duplicated genes. Crop developers need to understand how important genes were duplicated, deleted, and changed over evolutionary time. This allows scientists to develop more predictable crop improvements. Credit: “Dynamic evolution of small signaling peptide compensation in plant stem cell control” by Choon-Tak Kwon, Lingli Tang, Xingang Wang, Iacopo Gentile, Anat Hendelman, Gina Robitaille, Joyce Van Eck, Cao Xu and Zachary B. Lippman, 28 March 2022, Nature Plants. DOI: 10.1038/s41477-022-01118-w Scientists have discovered that octopuses demonstrate two distinct sleep stages: a quiet stage and an active one that resembles REM sleep in mammals. During the active sleep stage, octopuses display behaviors and neural activity similar to their awake state, which may serve a function akin to dreaming in humans. Like humans, octopuses transition between two sleep stages – a quiet stage and an active stage that resembles REM sleep in mammals. But could this mean that octopuses dream? When octopuses sleep, their quiet periods of slumber are punctuated by short bursts of frenzied activity. Their arms and eyes twitch, their breathing rate quickens, and their skin flashes with vibrant colors. Now, researchers from the Okinawa Institute of Science and Technology (OIST), in collaboration with the University of Washington, have closely examined the brain activity and skin patterning in octopuses (Octopus laqueus) during this active period of sleep and discovered that they closely resemble neural activity and skin patterning behavior seen when awake. Wake-like activity also occurs during rapid eye movement (REM) sleep in mammals – the phase in which most dreams occur. During quiet sleep, octopus laqueus appears white and motionless. This quiet sleep is punctuated by bursts of sleep that show wake-like activity (active sleep) roughly every hour. Credit: Keishu Asada (OIST) A Link Between Octopus and Human Sleep Cycles The study, published on June 28 in the journal Nature, highlights the remarkable similarities between the sleeping behavior of octopuses and humans and provides fascinating insights about the origin and function of sleep. “All animals seem to show some form of sleep, even simple animals like jellyfish and fruit flies. But for a long time, only vertebrates were known to cycle between two different sleep stages,” said senior author, Professor Sam Reiter, who leads the Computational Neuroethology Unit at OIST. These new revelations into how octopuses sleep came through a visit to OIST by Dr. Leenoy Meshulam, a statistical physicist at the University of Washington, who spent three months as a guest of the OIST Theoretical Sciences Visiting Program. “The fact that two-stage sleep has independently evolved in distantly related creatures, like octopuses, which have large but completely different brain structures from vertebrates, suggests that possessing an active, wake-like stage may be a general feature of complex cognition,” said Dr. Meshulam. An octopus from the species Octopus laqueus changes its skin patterns during active sleep. Credit: OIST To begin, the scientists checked whether the octopuses were truly asleep during this active period. They tested how the octopuses responded to a physical stimulus and found that when in both the quiet and active stage of sleep, the octopuses required stronger stimulation before reacting, compared to when they were awake. The team also discovered that if they prevented the octopuses from sleeping, or disrupted them during the active phase of sleep, the octopuses later entered active sleep sooner and more frequently. “This compensatory behavior nails down the active stage as being an essential stage of sleep that is needed for octopuses to properly function,” said Aditi Pophale, co-first author of the study and PhD student at OIST. Brain Activity Resembling Human Sleep Patterns The researchers also delved into the brain activity of the octopuses when awake and asleep. During quiet sleep, the scientists saw characteristic brain waves that closely resemble certain waveforms seen during non-REM sleep in mammalian brains called sleep spindles. Although the exact function of these waveforms is unclear even within humans, scientists believe they aid in consolidating memories. Using a cutting-edge microscope built by co-first author Dr. Tomoyuki Mano, the researchers determined that these sleep spindle-like waves occur in regions of the octopuses’ brains associated with learning and memory, suggesting that these waves potentially serve a similar function to humans. Roughly once an hour, the octopuses entered an active sleep phase for around a minute. During this stage, the octopuses’ brain activity very closely resembled their brain activity while awake, just like REM sleep does in humans. The research group also captured and analyzed the changing skin patterns of the octopuses when awake and asleep in ultra-high 8K resolution. “By filming in such high resolution, we can see how each individual pigmented cell behaves in order to create an overall skin pattern,” said Dr. Meshulam. “This could help us create simple skin pattern models to understand the general principles of waking and sleeping patterning behavior.” When awake, octopuses control thousands of tiny, pigmented cells in their skin, creating a vast array of different skin patterns. They use these patterns to camouflage themselves in different environments, and in social or threat displays, such as warning off predators and communicating with each other. During active sleep, the scientists reported that the octopuses cycled through these same skin patterns. Could Octopuses Be Dreaming? The similarities between active sleep and awake states could be explained by a variety of reasons, said the scientists. One theory is that octopuses may be practicing their skin patterns to improve their waking camouflage behavior, or simply maintaining the pigment cells. Another intriguing idea is that the octopuses could be re-living and learning from their waking experiences, such as hunting or hiding from a predator, and reactivating the skin pattern associated with each experience. In other words, they could be doing something similar to dreaming. “In this sense, while humans can verbally report what kind of dreams they had only once they wake, the octopuses’ skin pattern acts as a visual readout of their brain activity during sleep,” said Prof. Reiter. He added, “We currently don’t know which of these explanations, if any, could be correct. We are very interested in investigating further.” Reference: “Wake-like skin patterning and neural activity during octopus sleep” by Aditi Pophale, Kazumichi Shimizu, Tomoyuki Mano, Teresa L. Iglesias, Kerry Martin, Makoto Hiroi, Keishu Asada, Paulette García Andaluz, Thi Thu Van Dinh, Leenoy Meshulam and Sam Reiter, 28 June 2023, Nature. DOI: 10.1038/s41586-023-06203-4 Pathogens Illustration MIT Senior Desmond Edwards has an insatiable curiosity about how the human body works — and how diseases stop it from working. Desmond Edwards was a little kid when first learned about typhoid fever. Fortunately, he didn’t have the disease. He was looking at a cartoon public health announcement. The cartoon, produced by the Pan American Health Organization, was designed to educate people in his home country of Jamaica about the importance of immunizations for diseases like typhoid. The typhoid character in the cartoon was so unpleasant it gave him nightmares. Edwards did have his fair share of hospital visits throughout his childhood. But, his own struggles with infection and illness, and those typhoid cartoon nightmares, became his inspiration for pursuing a career studying human disease. At age 6, Edwards was running impromptu baking soda experiments in repurposed glitter containers in his kitchen. Today, he is a senior at MIT, majoring in biology and biological engineering, thanks to a team of dedicated mentors and an insatiable curiosity about how the human body works — or, more accurately, how diseases stop it from working. Finding a way into research Edwards knew he wanted to do research but says he assumed that that was something you did after you got your degree. Imagine his surprise, then, upon arriving at MIT in 2018 and meeting classmates who not only had done research, but already had publications. Realizing that he could get a jump-start on his career, he sought out research opportunities and enrolled in the biology class 7.102 (Introduction to Molecular Biology Techniques) for his first-year Independent Activities Period. The class was specifically geared toward first-year students like him with no lab experience. MIT senior Desmond Edwards majors in biology and bioengineering and researches the intracellular life cycle of disease-causing pathogens while pursuing extracurricular activities focused on science education and outreach for diverse communities. Credit: Steph Stevens “It was a great first look at how research is done,” Edwards says of the class. Students took water samples from the Charles River and were expected to identify the strains of bacteria found in those samples using various biological techniques. They looked at the bacteria under a microscope. They examined how the samples metabolized different sources of carbon and determined if they could be stained by different dyes. They even got to try out basic genetic sequencing. “We knew where we were starting. And we knew the end goal,” says Edwards. The in-between was up to them. Class 7.102 is taught by Mandana Sassanfar, a lecturer in biology and the department’s director of diversity and science outreach. For Sassanfar, the class is also an opportunity to find lab placements for students. In Edwards’ case, she literally led him to the lab of Assistant Professor Becky Lamason, walking up with him one evening to meet a postdoc, Jon McGinn, to talk about the lab and opportunities there. After Edwards expressed his interest to Lamason, she responded within 30 minutes. McGinn even followed up to answer any lingering questions. “I think that was really what pushed it over the edge,” he says of his decision to take a position in the Lamason lab. “I saw that they were interested not only in having me as someone to help them do research, but also interested in my personal development.” At the edges of cells and disciplines The Lamason lab researches the life cycle of two different pathogens, trying to understand how the bacteria move between cells. Edwards has focused on Rickettsia parkeri, a tick-borne pathogen that’s responsible for causing spotted fever. This type of Rickettsia is what biologists call an obligate intracellular pathogen, meaning that it resides within cells and can only survive when it’s in a host. “I like to call it a glorified virus,” Edwards jokes. Edwards gets excited describing the various ways in which R. parkeri can outsmart its infected host. It’s evolved to escape the phagosome of the cell, the small liquid sac that forms from the cell membrane and engulfs organisms like bacteria that pose a threat. Once it gets past the phagosome and enters the cell, it takes over cellular machinery, just like a virus. At this point of the life cycle, a bacterium will typically replicate so many times that the infected cell will burst, and the pathogen will spread widely. R. parkeri, though, can also spread to uninfected cells directly through the membrane where two cells touch. By not causing a cell to burst, the bacterium can spread without alerting the host to its presence. “From a disease standpoint, that’s extremely interesting,” says Edwards. “If you’re not leaving the cell or being detected, you don’t see antibodies. You don’t see immune cells. It’s very hard to get that standard immune response.” In his time in the lab, Edwards has worked on various projects related to Rickettsia, including developing genetic tools to study the pathogen and examining the potential genes that might be important in its life cycle. His projects sit at the intersection of biology and biological engineering. “For me, I kind of live in between those spaces,” Edwards explains. “I am extremely interested in understanding the mechanisms that underlie all of biology. But I don’t only want to understand those systems. I also want to engineer them and apply them in ways that can be beneficial to society.” Science for society Last year, Edwards won the Whitehead Prize from the Department of Biology, recognizing students with “outstanding promise for a career in biological research.” But his extracurricular activities have been driven more by his desire to apply science for tangible social benefits. “How do you take the science that you’ve done in the lab, in different research contexts, and translate that in a way that the public will actually benefit from it?” he asks. Science education is particularly important for Edwards, given the educational opportunities he was given to help get to MIT. As a high schooler, Edwards participated in a Caribbean Science Foundation initiative called the Student Programme for Innovation in Science and Engineering. SPISE, as it’s known, is designed to encourage and support Caribbean students interested in careers in STEM fields. The program is modeled on the Minority Introduction to Engineering and Science program (MITES) at MIT. Cardinal Warde, a professor of electrical engineering, is himself from the Caribbean and serves as the faculty director for both MITES and SPISE. “That experience not only kind of opened my eyes a bit more to what was available, what was in the realm of possibilities, but also provided support to get to MIT,” Edwards says of SPISE. For example, the program helped with college applications and worked with him to secure an internship at a biotech company when he first moved to the United States. “If education falters, then you don’t replenish the field of science,” Edwards argues. “You don’t get younger generations excited, and the public won’t care.” Edwards has also taken a leadership role in the MIT Biotechnology Group, a campus-wide student group meant to build connections between the MIT community and thought leaders in industry, business, and academia. For Edwards, the biotech and pharmaceutical industries play a clear role in disease treatment, and he knew he wanted to join the group before he even arrived at MIT. In 2019, he became co-director of the Biotech Group’s Industry Initiative, a program focused on preparing members for industry careers. In 2020, he became undergraduate president, and this year he’s co-president of the entire organization. Edwards speaks proudly of what the Biotech Group has accomplished during his tenure on the executive board, highlighting that they not only have the largest cohort ever this year, but it’s also the first time the group has been majority undergraduate. Somehow, in between his research and outreach work, Edwards finds time to minor in French, play for the Quidditch team, and serve as co-president on the Course 20 Undergraduate Board, among other activities. It’s a balancing act that Edwards has mastered over his time at MIT because of his genuine excitement and interest in everything that he does. “I don’t like not understanding things,” he jokes. “That applies to science, but it also extends to people.” DVDV1551RTWW78V Innovative pillow ODM solution in Vietnam 》trusted by brand builders and product innovatorsOne-stop OEM/ODM solution provider Thailand 》the smart choice for brands seeking quality and customizationIndonesia flexible graphene product manufacturing 》offering full-service support from design to delivery |
|
最新創作 |
|
||||
|
||||
|
||||
|
||||
|
||||