字體:小 中 大 |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2025/11/26 00:19:18瀏覽15|回應0|推薦0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
身為一個熱愛美食、喜歡在城市裡挖掘驚喜的人,臺中公益路一直是我最常出沒的地方之一。這條路可說是「臺中人的美食戰場」,從精緻西餐到創意火鍋,從日式丼飯到義式早午餐,每走幾步,就會有完全不同的特色料理餐廳。 這次我特別花了一整個月,實際造訪了公益路上十間口碑不錯的餐廳。有的是網友熱推的打卡名店,也有隱藏在巷弄裡的小驚喜。我以環境氛圍、口味表現、價格CP值與再訪意願為基準,整理出這篇實測評比。希望能幫正在猶豫去哪裡吃飯的你,找到那一間「吃完會想再來」的餐廳。 評比標準與整理方向
這次我走訪的10家餐廳橫跨不同料理類型,從高質感牛排館到巷弄系早午餐,每一間都有自己獨特的風格。為了讓整體比較更客觀,我依照以下四大面向進行評比,並搭配實際用餐體驗來打分。
整體而言,我希望這份評比不只是「哪家好吃」,而是幫你在不同情境下(約會、家庭聚餐、朋友小聚、商業午餐)都能快速找到合適的選擇。畢竟,美食不只是味覺的滿足,更是一段段與朋友共享的生活記憶。 10間臺中公益路餐廳評比懶人包公益路向來是臺中人聚餐的首選地段,從火鍋、燒肉到中式料理與早午餐,每走幾步就有驚喜。以下是我實際造訪過的10間代表性餐廳清單,橫跨平價、創意、高級各路風格。
一頭牛日式燒肉|炭香濃郁的和牛饗宴,約會聚餐首選
走在公益路上,很難不被 一頭牛日式燒肉 的木質外觀吸引。低調卻不失質感的門面,搭配昏黃燈光與暖色調的內裝,讓人一進門就感受到濃濃的日式職人氛圍。店內空間不大,但桌距規劃得宜,每桌皆設有獨立排煙設備,烤肉時完全不怕滿身油煙味。 餐點特色
一頭牛的靈魂,絕對是他們招牌的「三國和牛拼盤」。 用餐體驗整體節奏掌握得非常好。店員會在你剛想烤下一片肉時貼心遞上夾子、幫忙換烤網,讓人完全不用分心。整場用餐過程就像一場表演,從視覺、嗅覺到味覺都被滿足。 綜合評分
地址:408臺中市南屯區公益路二段162號電話:04-23206800 官網:http://www.marihuana.com.tw/yakiniku/index.html 小結語一頭牛日式燒肉不僅是「吃肉的地方」,更像是一場五感盛宴。從進門那一刻到最後一道甜點,都能感受到他們對細節的用心。 TANG Zhan 湯棧|文青系火鍋代表,麻香湯底與視覺美感並重
在公益路這條美食戰線上,TANG Zhan 湯棧 是讓人一眼就會想走進去的那一種。 餐點特色
湯棧最有名的當然是它的「麻香鍋」。 用餐體驗整體氛圍比一般火鍋店更有質感。 綜合評分
地址:408臺中市南屯區公益路二段248號電話:04-22580617 官網:https://www.facebook.com/TangZhan.tw/ 小結語TANG Zhan 湯棧 把傳統火鍋做出新的樣貌保留臺式鍋物的溫度,又結合現代風格與細節服務,讓吃鍋這件事變得更有品味。 如果你想找一間兼具「好吃、好拍、好放鬆」的火鍋店,湯棧會是公益路上最有風格的選擇之一。 NINI 尼尼臺中店|明亮寬敞的義式早午餐天堂
如果說前兩間是肉食愛好者的天堂,那 NINI 尼尼臺中店 絕對是想放鬆、聊聊天的好地方。餐廳外觀以白色系與大片玻璃窗為主,陽光灑進室內,讓人一踏入就有種度假般的輕盈感。假日早午餐時段特別熱鬧,建議提早訂位。 餐點特色
NINI 的菜單融合義式與臺灣人口味,選擇多樣且份量十足。主打的 松露燉飯 濃郁卻不膩口,米芯保留微Q口感;而 香蒜海鮮義大利麵 則以新鮮白蝦、花枝與淡菜搭配微辣蒜香,口感層次豐富。 用餐體驗店內氣氛輕鬆不拘謹,無論是一個人帶電腦工作、或朋友聚餐,都能找到舒服角落。餐點上桌速度穩定,服務人員態度親切、補水與收盤都非常主動。整體節奏讓人覺得「時間變慢了」,很適合想遠離忙碌日常的人。 綜合評分
地址:40861臺中市南屯區公益路二段18號電話:04-23288498 小結語NINI 尼尼臺中店是一間能讓人放下手機、慢慢吃飯的餐廳。餐點不追求浮誇,而是以「剛剛好」的份量與風味,陪伴每個平凡午後。如果你在找一間能邊吃邊聊天、拍照也漂亮的早午餐店,NINI 會是你在公益路上最不費力的幸福選擇。 加分100%浜中特選昆布鍋物|平價卻用心的湯頭系火鍋,家庭聚餐好選擇
在公益路這條高質感餐廳林立的戰場上,加分100%浜中特選昆布鍋物 走的是截然不同的路線。它沒有浮誇的裝潢、也沒有高價位的套餐,但靠著實在的湯頭與親切的服務,默默吸引許多回頭客。每到用餐時間,總能看到家庭或情侶三兩成群地圍著鍋邊聊天。 餐點特色
主打 北海道浜中昆布湯底,湯頭清澈卻不單薄,越煮越能喝出海藻與柴魚的自然香氣。 用餐體驗整體氛圍偏家庭取向,桌距寬敞、座位舒適,帶小孩來也不覺擁擠。店員態度親切,補湯、收盤都很勤快,給人一種「被照顧著」的安心感。 綜合評分
地址:403臺中市西區公益路288號電話:0910855180 小結語加分100%浜中特選昆布鍋物是一間「不浮誇、但會讓人想再訪」的火鍋店。它不追求豪華擺盤,而是用最簡單的湯頭與新鮮食材,傳遞出家常卻不平凡的溫度。 印月餐廳|中式料理的藝術演繹,宴客與家庭聚會首選
說到臺中公益路的中式料理代表,印月餐廳 絕對是榜上有名。這間開業多年的餐廳以「中菜西吃」的概念聞名,把傳統中式料理以現代手法重新詮釋。從建築外觀到餐具擺設,每個細節都散發著低調的典雅氣息。 餐點特色
印月最令人印象深刻的是他們將傳統中菜融入創意手法。 用餐體驗服務方面完全對得起餐廳的高級定位。從入座、點餐到上菜節奏,都拿捏得恰如其分。每道菜都會有服務人員細心介紹食材與吃法,讓人感受到「被款待」的尊榮感。 綜合評分
地址:408臺中市南屯區公益路二段818號電話:0422511155 小結語印月餐廳是一間「不只吃飯,更像品味生活」的地方。 KoDō 和牛燒肉|極致職人精神,專為儀式感與頂級味覺而生
若要形容 KoDō 和牛燒肉 的用餐體驗,一句話足以總結——「像在欣賞一場關於肉的表演」。 餐點特色
這裡主打 日本A5和牛冷藏肉,以「精切厚燒」的方式呈現。 用餐體驗KoDō 的最大特色是「儀式感」。 綜合評分
地址:403臺中市西區公益路260號電話:0423220312 官網:https://www.facebook.com/kodo2018/ 小結語KoDō 和牛燒肉不是日常餐廳,而是一場體驗。 永心鳳茶|在茶香裡用餐的優雅時光,臺味早午餐的新詮釋
走進 永心鳳茶公益店,彷彿進入一間有氣質的茶館。 餐點特色
永心鳳茶的餐點結合中式靈魂與西式擺盤,無論是「炸雞腿飯」還是「紅玉紅茶拿鐵」,都能讓人感受到熟悉卻不平凡的味道。 用餐體驗店內服務人員態度溫和,對茶品介紹詳盡。上餐節奏剛好,不急不徐。 綜合評分
地址:40360臺中市西區公益路68號三樓(勤美誠品)電話:0423221118 小結語永心鳳茶讓人重新定義「臺味」。 三希樓|老饕級江浙功夫菜,穩重又帶人情味的中式饗宴
位於公益路上的 三希樓 是許多臺中老饕的口袋名單。 餐點特色
三希樓的菜色以 江浙與港式料理 為主,兼顧傳統與現代風味。 用餐體驗三希樓的服務給人一種老派但貼心的感覺。 綜合評分
地址:408臺中市南屯區公益路二段95號電話:0423202322 官網:https://www.sanxilou.com.tw/ 小結語三希樓是一間「吃得出功夫」的餐廳。 一笈壽司|低調奢華的無菜單日料,職人手藝詮釋旬味極致
在熱鬧的公益路上,一笈壽司 低調得幾乎不顯眼。 餐點特色
一笈壽司採 Omakase(無菜單料理) 形式,每一餐都由主廚根據當日食材設計。 用餐體驗整場用餐約90分鐘,節奏緩慢但沉穩。 綜合評分
地址:408臺中市南屯區公益路二段25號電話:0423206368 官網:https://www.facebook.com/YIJI.sushi/ 小結語一笈壽司是一間真正讓人「放慢呼吸」的餐廳。 茶六燒肉堂|人氣爆棚的和牛燒肉聖地,肉香與幸福感同時滿分
若要票選公益路上「最難訂位」的餐廳,茶六燒肉堂 絕對名列前茅。 餐點特色
茶六主打 和牛燒肉套餐,價格約落在 $700–$1000 間,份量與品質兼具。 用餐體驗茶六的服務效率相當高。店員親切、換網勤快、補水速度快,整場用餐流程流暢無壓力。 綜合評分
地址:403臺中市西區公益路268號電話:0423281167 官網:https://inline.app/booking/-L93VSXuz8o86ahWDRg0:inline-live-karuizawa/-LUYUEIOYwa7GCUpAFWA 小結語茶六燒肉堂用「穩定品質+輕奢氛圍」抓住了臺中年輕族群的心。 吃完10家公益路餐廳後的心得與結語吃完這十家餐廳後,臺中公益路不只是一條美食街,而是一段生活風景線。 有的餐廳講究細膩與儀式感,像 一頭牛日式燒肉 與 一笈壽司,讓人感受到食材最純粹的美好 有的則以親切與溫度打動人心,像 加分昆布鍋物、永心鳳茶,讓人明白吃飯不只是為了飽足,而是一種被照顧的幸福。 而像茶六燒肉堂、TANG Zhan 湯棧 這類人氣名店,則用穩定的品質與熱絡的氛圍,成為許多臺中人心中「想吃肉就去那裡」的代名詞。 這十家店,構成了公益路最動人的縮影 有華麗的,也有溫柔的;有傳統的,也有創新的。 每一家都在自己的風格裡發光,讓人吃到的不只是料理,而是一種生活的溫度與節奏。 對我而言,這不僅是一場美食旅程,更是一趟關於「臺中味道」的回憶之旅。 FAQ:關於臺中公益路美食常見問題Q1:公益路哪一區的餐廳最集中? Q2:需要提前訂位嗎? 最後的話若要用一句話形容這趟美食之旅,我會說: 加分100%浜中特選昆布鍋物慶生氛圍夠嗎? 如果你也和我一樣喜歡用味蕾探索一座城市,那就把這篇公益路美食攻略收藏起來吧。加分100%浜中特選昆布鍋物年節期間價格會變嗎? 無論是約會、慶生、家庭聚餐,或只是想犒賞一下辛苦的自己——這條路上永遠會有一間剛剛好的餐廳在等你。一頭牛日式燒肉春酒菜色豐富嗎? 下一餐,不妨從這10家開始。三希樓有壽星優惠嗎? 打開手機、約上朋友,讓公益路成為你生活裡最容易抵達的小確幸。加分100%浜中特選昆布鍋物好吃嗎? 如果你有私心愛店,也歡迎留言分享,NINI 尼尼臺中店尾牙預算好掌控嗎? 你的推薦,可能讓我下一趟美食旅程變得更精彩。印月餐廳值得排隊嗎? Researchers have found that plants can potentially control the genetics of their root symbionts. Plants Tweak Their Fungi Partners’ Genes To Grow Better Researchers from the University of Ottawa have discovered that plants may be able to control the genetics of their intimate root symbionts – the organism with which they live in symbiosis – thereby providing a better understanding of their growth. In addition to having a significant impact on all terrestrial ecosystems, their discovery may lead to improved eco-friendly agricultural applications. We talked to research lead Nicolas Corradi, Associate Professor in the Department of Biology and Research Chair in Microbial Genomics at the University of Ottawa, and lead author Vasilis Kokkoris, Postdoctoral Fellow in the Corradi Lab, to learn more about their recent study published in the journal Current Biology. Can you tell us more about your findings? Nicolas Corradi: “We have uncovered a fascinating genetic regulation between plants and their microbial symbionts, known as Arbuscular Mycorrhizal Fungi (AMF). AMF are plant obligate symbionts that grow within the plant roots and help their hosts to grow better and be more resistant to environmental stressors. AMF genetics have long been mysterious; while typical cells carry one nucleus, the cells of AMF carry thousands of nuclei that can be genetically diverse. How these nuclei communicate with each other and whether the plants can control their relative abundance has been a total mystery. Each spore contains hundreds of nuclei. The image was generated using confocal microscopy. The bright spots within the spores represent nuclei labeled with fluorescent dye. Images are color-coded along z-axis for depth recognition, with white and red colors being closer to the observer while blue colors being the furthest. Each image is the result of approximately 300 z-stacks (0.35um intervals). Credit: University of Ottawa/ Microscope Laboratory (Ottawa-RDC, Agriculture and Agri-Food Canada) Our work provides insights into this unique genetic condition: 1- We demonstrate that the host plant symbiont influences the relative abundance of thousands of co-existing nuclei carried by their fungal symbionts. 2- We find evidence that co-existing nuclei of different genetic backgrounds cooperate, rather than compete with one another thus potentially maximizing growth benefits for both the fungi and their plant partners.” How did you come to these conclusions? Vasilis Kokkoris: “We implemented a novel molecular approach accompanied by advanced microscopy and mathematical modeling. Every single AMF spore carries hundreds of nuclei (see image). By analyzing single spores, we were able to quantify the genetics of thousands of nuclei and define their relative abundance in different fungal strains and across plant species. To ensure that we accurately analyze single nuclei, we used advanced microscopy to visualize and count the nuclei in the spores. Lastly, we used mathematical modeling to prove that the observed abundance of nuclear genotypes we identified cannot be a product of luck but instead is the result of a driven cooperation between them. To better understand what is regulating the AMF nuclei we grew different AMF strains with different hosts and found that plants have control of the relative abundance of the fungal nuclei.” What are the impacts of your discovery? Nicolas Corradi: “For many years, AMF have been considered to be genetic peculiarities and far away from model organisms. Inconsistencies are commonly observed in plant-AMF experiments. For example, growing the same fungal strain with different plants can lead to drastically different plant yields. For a long time, this variance in plant growth was blamed on the AMF mysterious genetics. Our research provides an answer as we demonstrate that the genetics of these fungi, and their effect on plant growth, can be manipulated by plants thus explaining the reason for the observed variability on plant growth. From an environmental standpoint, this new knowledge allows for a better understanding of how plants can influence the genetics of their symbiotic partners, thus influencing entire terrestrial ecosystems. From an economic standpoint, it opens doors to improved sustainable agricultural applications.” Reference: “Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi” by Vasilis Kokkoris, Pierre-Luc Chagnon, Gökalp Yildirir, Kelsey Clarke, Dane Goh, Allyson M. MacLean, Jeremy Dettman, Franck Stefani and Nicolas Corradi, 4 February 2021, Current Biology. DOI: 10.1016/j.cub.2021.01.035 The research was led by the Corradi Lab, at the University of Ottawa and was conducted at the University of Ottawa and the Agriculture and Agri-Food Canada (AAFC). Two members of the Corradi lab, uOttawa PhD student Gökalp Yildirir and recent graduate Kelsey Clarke, also contributed to this study. The other co-authors include Dr. Pierre-Luc Chagnon, Assistant Professor in the Department of Biological Sciences at the University of Montreal, Dr. Allyson M MacLean, Assistant Professor in the Department of Biology at the University of Ottawa and her MSc student Dane Goh, and Dr. Jeremy Dettman and Dr. Franck Stefani from the Agriculture and Agri-food Canada (Ottawa Research and Development Centre). In new research, scientists reveal another factor implicated in the aging process—a class of lipids called SGDGs that decline in the brain with age and may have anti-inflammatory effects. The molecules, called SGDGs, may lead to new ways to treat age-related neurological diseases. Aging involves complicated plot twists and a large cast of characters, including inflammation, stress, metabolism changes, and many others. Now, a team of scientists reveal another factor implicated in the aging process—a class of lipids called SGDGs (3-sulfogalactosyl diacylglycerols) that may have anti-inflammatory effects and decline in the brain with age. The research helps unravel the molecular basis of brain aging, reveals new mechanisms underlying age-related neurological diseases, and offers future opportunities for therapeutic intervention. The study, by scientists from the Salk Institute and the University of California, San Diego (UCSD), was published on October 20, 2022, in the journal Nature Chemical Biology. “These SGDGs clearly play an important role in aging, and this finding opens up the possibility that there are other critical aging pathways we’ve been missing,” says co-corresponding author Alan Saghatelian. “This is a pretty clear case of something that should be dug into more in the future.” Saghatelian is a professor in Salk’s Clayton Foundation Laboratories for Peptide Biology and holder of the Dr. Frederik Paulsen Chair. The brain is comprised of lipids or fats, but the role of these molecules in health and disease remains unknown. The newly identified class of lipids, called SGDGs, decrease with aging, which suggests they may play a role in brain aging. Credit: Salk Institute SGDGs are a class of lipids, which are also called fats. Lipids contribute to the structure, development, and function of healthy brains, while badly regulated lipids are linked to aging and diseased brains. However, lipids, unlike genes and proteins, are not well understood and have often been overlooked in aging research. Saghatelian specializes in discovering new lipids and determining their structures. In collaboration with Professor Dionicio Siegel at UC San Diego, Saghatelian’s lab made three discoveries involving SGDGs: In the brain, lipid levels are very different in older mice than in younger mice; all SGDG family members and related lipids change significantly with age; and SGDGs may be regulated by processes that are known to regulate aging. To reach these findings, the team took an unusual, exploratory approach that combined the large-scale study of lipids (lipidomics) with structural chemistry and advanced data analytics. They first obtained lipid profiles of mouse brains at five ages, ranging from one to 18 months, using liquid chromatography-mass spectrometry. Technological advances in this instrumentation vastly expanded the number of data points available to the scientists, and advanced data analysis allowed them to determine age-related patterns in the enormous lipid profiles. The team then constructed SGDG molecules and tested them for biological activity. From left: Joan Vaughan, Srihari Konduri, Cynthia Donaldson, Peter Gray, Dionicio Siegel, Dan Tan, Alan Saghatelian, and Antonio Pinto. Credit: Salk Institute “SGDGs were first identified in the 1970s, but there were few follow-up studies. These lipids were essentially forgotten and missing from the lipid databases. Nobody knew SGDGs would be changing or regulated in aging, let alone that they have bioactivity and, possibly, be therapeutically targetable,” says first author Dan Tan, a postdoctoral fellow in Saghatelian’s lab at Salk. The analysis showed that SGDGs possess anti-inflammatory properties, which could have implications for neurodegenerative disorders and other neurological conditions that involve increased inflammation in the brain. The team also discovered that SGDGs exist in human and primate brains, suggesting that SGDGs may play an important role in animals other than mice. Further research will be required to show if SGDGs contribute to human neuroinflammation. In the future, the team will examine how SGDGs are regulated with aging and what proteins are responsible for making them and breaking them down, which may open the door to discovering novel genetic activity associated with aging. “With the understanding of the structure of SGDGs and our ability to create them in the laboratory, the study of these important lipids is now wide open and ripe for discovery,” says Siegel, co-corresponding author of the study. Reference: “A class of anti-inflammatory lipids decrease with aging in the central nervous system” by Dan Tan, Srihari Konduri, Meric Erikci Ertunc, Pan Zhang, Justin Wang, Tina Chang, Antonio F. M. Pinto, Andrea Rocha, Cynthia J. Donaldson, Joan M. Vaughan, Raissa G. Ludwig, Elizabeth Willey, Manasi Iyer, Peter C. Gray, Pamela Maher, Nicola J. Allen, J. Bradley Zuchero, Andrew Dillin, Marcelo A. Mori, Steven G. Kohama, Dionicio Siegel and Alan Saghatelian, 20 October 2022, Nature Chemical Biology. DOI: 10.1038/s41589-022-01165-6 Additional authors included Meric Erikci Ertunc, Justin Wang, Tina Chang, Antonio F. M. Pinto, Andrea Rocha, Cynthia J. Donaldson, Joan M. Vaughan, Peter C. Gray, Pamela Maher, and Nicola J. Allen of Salk; Srihari Konduri of UC San Diego; Pan Zhang of UC Los Angeles; Raissa G. Ludwig and Marcelo A. Mori of the University of Campinas, Brazil; Elizabeth Willey and Andrew Dillin of UC Berkeley; Manasi Iyer and Bradley Zuchero of Stanford University; and Steven G. Kohama of Oregon Health and Science University. This work was funded by Ferring Pharmaceuticals and Frederik Paulsen, the National Institutes of Health (P30 CA014195, R01DK106210, R01NS119823, R01AG069206 and RF1AG061296), the Oregon National Primate Research Center (P51 OD 010092), the Wu Tsai Human Performance Alliance and the Joe and Clara Tsai Foundation, the Anderson Foundation, the Bruce Ford and Anne Smith Bundy Foundation, the Pioneer Fellowship, the Howard Hughes Medical Institute, the CZI Neurodegeneration Network, and The Sãn Paulo Research Foundation (2017/01184-9). Researchers discovered a cluster of neurons in the brain’s striatum that holds information about potential outcomes of various decisions. These neurons become highly active when a behavior results in an unexpected outcome, aiding the brain in adapting to changing situations. These neurons, located in the brain’s striatum, appear to help with decision-making that requires evaluating risks and benefits. When we make complex decisions, we have to take many factors into account. Some choices have a high payoff but carry potential risks; others are lower risk but may have a lower reward associated with them. A new study from MIT sheds light on the part of the brain that helps us make these types of decisions. The research team found a group of neurons in the brain’s striatum that encodes information about the potential outcomes of different decisions. These cells become particularly active when a behavior leads to a different outcome than what was expected, which the researchers believe helps the brain adapt to changing circumstances. “A lot of this brain activity deals with surprising outcomes, because if an outcome is expected, there’s really nothing to be learned. What we see is that there’s a strong encoding of both unexpected rewards and unexpected negative outcomes,” says Bernard Bloem, a former MIT postdoc and one of the lead authors of the new study. MIT neuroscientists have found that striosomes (red) in the striatum encode information about the potential outcomes of a particular action. Credit: Courtesy of the researchers Impairments in this kind of decision-making are a hallmark of many neuropsychiatric disorders, especially anxiety and depression. The new findings suggest that slight disturbances in the activity of these striatal neurons could swing the brain into making impulsive decisions or becoming paralyzed with indecision, the researchers say. Rafiq Huda, a former MIT postdoc, is also a lead author of the paper, which appears in Nature Communications. Ann Graybiel, an MIT Institute Professor and member of MIT’s McGovern Institute for Brain Research, is the senior author of the study. Learning From Experience The striatum, located deep within the brain, is known to play a key role in making decisions that require evaluating outcomes of a particular action. In this study, the researchers wanted to learn more about the neural basis of how the brain makes cost-benefit decisions, in which a behavior can have a mixture of positive and negative outcomes. To study this kind of decision-making, the researchers trained mice to spin a wheel to the left or the right. With each turn, they would receive a combination of reward (sugary water) and negative outcome (a small puff of air). As the mice performed the task, they learned to maximize the delivery of rewards and to minimize the delivery of air puffs. However, over hundreds of trials, the researchers frequently changed the probabilities of getting the reward or the puff of air, so the mice would need to adjust their behavior. As the mice learned to make these adjustments, the researchers recorded the activity of neurons in the striatum. They had expected to find neuronal activity that reflects which actions are good and need to be repeated, or bad and that need to be avoided. While some neurons did this, the researchers also found, to their surprise, that many neurons encoded details about the relationship between the actions and both types of outcomes. The researchers found that these neurons responded more strongly when a behavior resulted in an unexpected outcome, that is, when turning the wheel in one direction produced the opposite outcome as it had in previous trials. These “error signals” for reward and penalty seem to help the brain figure out that it’s time to change tactics. Most of the neurons that encode these error signals are found in the striosomes — clusters of neurons located in the striatum. Previous work has shown that striosomes send information to many other parts of the brain, including dopamine-producing regions and regions involved in planning movement. Here, striosomes (red) appear and then disappear as the view moves deeper into the striatum. Credit: Courtesy of the researchers “The striosomes seem to mostly keep track of what the actual outcomes are,” Bloem says. “The decision whether to do an action or not, which essentially requires integrating multiple outcomes, probably happens somewhere downstream in the brain.” Making Judgments The findings could be relevant not only to mice learning a task, but also to many decisions that people have to make every day as they weigh the risks and benefits of each choice. Eating a big bowl of ice cream after dinner leads to immediate gratification, but it might contribute to weight gain or poor health. Deciding to have carrots instead will make you feel healthier, but you’ll miss out on the enjoyment of the sweet treat. “From a value perspective, these can be considered equally good,” Bloem says. “What we find is that the striatum also knows why these are good, and it knows what are the benefits and the cost of each. In a way, the activity there reflects much more about the potential outcome than just how likely you are to choose it.” This type of complex decision-making is often impaired in people with a variety of neuropsychiatric disorders, including anxiety, depression, schizophrenia, obsessive-compulsive disorder, and posttraumatic stress disorder. Drug abuse can also lead to impaired judgment and impulsivity. “You can imagine that if things are set up this way, it wouldn’t be all that difficult to get mixed up about what is good and what is bad, because there are some neurons that fire when an outcome is good and they also fire when the outcome is bad,” Graybiel says. “Our ability to make our movements or our thoughts in what we call a normal way depends on those distinctions, and if they get blurred, it’s real trouble.” The new findings suggest that behavioral therapy targeting the stage at which information about potential outcomes is encoded in the brain may help people who suffer from those disorders, the researchers say. Reference: “Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task” by Bernard Bloem, Rafiq Huda, Ken-ichi Amemori, Alex S. Abate, Gayathri Krishna, Anna L. Wilson, Cody W. Carter, Mriganka Sur and Ann M. Graybiel, 22 March 2022, Nature Communications. DOI: 10.1038/s41467-022-28983-5 The research was funded by the National Institutes of Health/National Institute of Mental Health, the Saks Kavanaugh Foundation, the William N. and Bernice E. Bumpus Foundation, the Simons Foundation, the Nancy Lurie Marks Family Foundation, the National Eye Institute, the National Institute of Neurological Disease and Stroke, the National Science Foundation, the Simons Foundation Autism Research Initiative, and JSPS KAKENHI. RRG455KLJIEVEWWF 加分100%浜中特選昆布鍋物慶生氣氛夠嗎? 》台中公益路食記攻略|10家餐廳評分&推薦KoDō 和牛燒肉團體宴客合適嗎? 》台中公益路餐廳推薦|10間必吃美食實測評比一笈壽司會太油嗎? 》台中公益路食記攻略|10家餐廳評分&推薦 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ( 創作|笑話 ) |
































