網路城邦
上一篇 回創作列表 下一篇  字體:
智慧檢測Double A AI相挺 AOI如虎添翼
2023/09/20 08:00:00瀏覽89|回應0|推薦0

文/季平

不少產業的檢測方式已從土法煉鋼的人工檢測走向自動光學檢測AOI(Automated Optical Inspection),因為AI尖端技術大幅躍進,AOI在原有的基礎下搭載AI優勢,發展出更為多元的AI+AOI智慧檢測應用及解決方案,降低人力、時間成本、失誤率之餘,也大幅提高產線效率與產品良率。

從傳統檢測到AOI再到AI+AOI,檢測技術與使用工具歷經幾次迭代。與傳統檢測相比,AOI使用高解析度攝影鏡頭搭配與時俱進的影像處理算法,透過機器視覺取代人力的雙眼、大腦及動作,可以快速、精準地檢測產品缺陷與異常,這些優勢的幕後功臣涉及自動化、電控、光學照明、視覺量測、影像處理、定位量測、感測等技術領域。

相較於傳統檢測,AOI最大的優勢在於自動化、高效率、高靈敏、高精度,以及非接觸性,有助節省成本、提高效率與安全性,而且AOI不需直接接觸檢測物,有助降低損壞風險,尤其適合大規模生產及表面缺陷檢測。

AOI的缺點包含投入成本較傳統檢測高、須累積一定的專業知識與技術能量才能確保檢測品質與精準度;被檢測物表面如果出現反射、不規則、不平坦等特殊狀況,可能影響檢測效果;某些檢測場景可能無法發揮AOI效能,如受檢測物內部結構及細部瑕疵檢測,必要時可能需要其他輔助檢測方法補強。舉例來說傳統AOI檢測設備需要控制環境、光源及拍攝角度等條件,還要明確量測目標物特徵,同時需要藉由人工方式定義瑕疵樣本特徵,才有利於AOI篩檢,一旦面臨新的檢測物,多半需要重新設置AOI檢測流程,這部份相對耗時費工。

產量高、品管要求高的產線多半會使用AOI進行篩檢,如半導體產業、手機零組件、醫療器材等在意高良率、高單價的產線面對這類產線AOI不只可以肩負檢查、剔除瑕疵的角色,還可以成為資料蒐集者。透過AOI不斷累積的瑕疵數據,經過合理分析、歸納等流程,可以梳理成大數據資料庫找出不良率發生原因。

眾所周知深度學習(Deep Learning)與數據歸納分析是AI的強項只要將產線的各項進出與瑕疵資料輸入系統,經過迭代就能分析影響良率的關鍵參數直擊瑕疵肇因,甚至梳理出簡化製程的各項解決方案。未來,隨著AOI導入AI新興技術,AOI將逐步走向智慧自動光學檢測(Intelligent Automatic Optical Inspection)。

雙A合璧 智慧再升級

晟格科技指出AOI在產業方面的應用已經越來越普遍,AOI搭配AI數據歸納分析,檢測效果更佳。就開發速度或演算速度來說,AI具有一定優勢,只要具備足夠的瑕疵樣品,AI可以快速學習、高效分析,2分鐘內就能學習100PCS 5M的NG照片,還可以產生原始碼加入系統程式中。即便產品受限於製程調整,AI也能快速學習、產生經驗參數。之後,累積各種NG經驗或調整演算法後,AI照樣可以快速學習產生新的經驗參數,加入系統程式中。萬一產品成像較為模糊,AI還是可以透過學習更多照片找出瑕疵。(Learn More)(圖/機器學習各項任務的時間百分比。Source:Cognilytica)

( 知識學習商業管理 )
推薦文章 列印 加入我的文摘
上一篇 回創作列表 下一篇

引用
引用網址:https://classic-blog.udn.com/article/trackback.jsp?uid=StunnahTaiwan&aid=179817485