字體:小 中 大 | |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2023/04/29 23:29:39瀏覽38|回應0|推薦0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
財 一.「72法則」: 在複利的效應下,我們的資金多久能增長一倍呢? 最簡單辦法就是用72除以投資報酬率的分子。 例如,一筆資金的報酬率是百分之八,那麼這筆資金 就可以在九年內增長一倍,(即72 ÷8 = 9年)。 當然數學公式求出的答案更精確,但這個速算法的答案已十分接近。
二.「115法則」: 投資要增長二倍需要多久呢? 也就是說,一塊錢的投資,多久才能變成三塊錢? 最簡單的方法就是用115除以投資報酬率分子。 例如,報酬率是百分之五,那麼這筆資金大約需要 二十三年就能增長三倍,(即115 ÷ 5 = 23年)。
三.投資報酬率=(賣出價-買入價)÷買入價×100 通貨膨脹的影響 1.通貨膨脹的影響: 「複利」與「通貨膨脹」可說是一枚銅幣的正反面。 換句話說,「72法則」和「115法則」同樣可以用來計算一件 物品的價格,多久會上漲一倍或兩倍,也就是物價上漲的預估。 比如說,一筆資金在百分之三的報酬率下,24年就能翻本, 增長一倍,或38.3年,增加兩倍,同樣的道理,如果 通貨膨脹率也是百分之三的話,物品的價格也在24年 會上漲一倍,或38.3年會上漲兩倍。 累積財富的過程中,複利使「時間」變成我們的摯友, 但若通貨膨脹上漲的幅度超過投資報酬率時,「時間」 就會變成為仇敵。換句話說,複利讓我們的資金增值, 而通貨膨脹則侵蝕我們的財富,因此,在計算投資報酬 率時,應該考慮的是「實際報酬率」。 只有這樣才能正確反映金錢的未來實際購買力。 2.實際報酬率 「實際報酬率」的計算取決於兩個因素: ※.帳面報酬率&通貨膨脹率 「帳面報酬率」是指按投資的帳面價值而支付的利率。 「通貨膨脹率」一般是根據「消費者物價指數」來決定, 「實際報酬率」大約就是帳面報酬率減去通貨膨脹率之後的差額。 例如,我們投資了$100,000,投資報酬率是百分之十。 乍看之下,這報酬率還不錯,但實際報酬率才真正的顯示 投資的收益是多少。假如通貨膨脹率是百分之四的話,實際報酬率 就是百分之六了,即(10% ﹣4% = 6%)。 這樣,雖然每年有$10,000的利息,但這筆利息收入的實際購買力 僅是$6,000而已,即6% ×10,000 = $6,000 速算法僅是幫助我們粗略估計投資的收益, 但實際報酬率卻顯示資金的實際購買力,因此更為重要。 只要瞭解在累積財富的過程中,利率與通貨膨脹有如一對孿生姐妹, 我們就能採取更有效的辦法來防止財富被侵蝕。 假如稅率是30%的話,您的實際報酬率就是百分之四點二了, 即(10% - 4%) X (1 - 30%)= 4.2%。 這樣,雖然每年有$10,000的利息,但這筆利息收入 扣除稅金和通貨膨脹率後,實際購買力僅是$4,200 而已,即(4.2% ×10,000 = $4,200)。 如果節省稅金是重要的考量,或許我們就應考慮採用年金 (Annuity)等那些可以延緩賦稅的金融商品來累積財富了。 From:網路資訊 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
( 不分類|不分類 ) |