陳老頭的論文
A Simple Intrinsic Proof of the Gauss-Bonnet Formula for Closed Riemannian Manifolds
有一些東東,值得深究
$$ \Phi_k=\epsilon_{i_1\cdots i_{2p}}u_{i_1}\theta_{i_2}\cdots \theta_{i_{2p}-i_{2k}} \Omega_{i_{2p-2k+1}i_{2p-2k+2}}\cdots \Omega_{ i_{2p-1}i_{2p}}, \quad k = 0, 1, \cdots,p-1\leqno(15) $$ $$ \Psi _k=\epsilon_{i_1\cdots i_{2p}}\Omega_{i_1i_2}\theta_{i_2}\cdots \theta_{i_{2p}-i_{2k}} \Omega_{i_{2p-2k+1}i_{2p-2k+2}}\cdots \Omega_{ i_{2p-1}i_{2p}}, \quad k = 0, 1, \cdots,p-1\leqno(16) $$
光看式子,無法瞭知其背後的意義
拿 n維球面當例子,實際算一遍
印象會相當深刻
julia軟體
也可以算二次曲率形式
|