|
|
文章數:62 |
NINI 尼尼台中店適合多人團聚嗎? 》公益路食旅特輯|10家餐廳一次告訴你 |
| 休閒生活|檔案分享 2025/11/20 16:33:56 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
身為一個熱愛美食、喜歡在城市裡挖掘驚喜的人,臺中公益路一直是我最常出沒的地方之一。這條路可說是「臺中人的美食戰場」,從精緻西餐到創意火鍋,從日式丼飯到義式早午餐,每走幾步,就會有完全不同的特色料理餐廳。 這次我特別花了一整個月,實際造訪了公益路上十間口碑不錯的餐廳。有的是網友熱推的打卡名店,也有隱藏在巷弄裡的小驚喜。我以環境氛圍、口味表現、價格CP值與再訪意願為基準,整理出這篇實測評比。希望能幫正在猶豫去哪裡吃飯的你,找到那一間「吃完會想再來」的餐廳。 評比標準與整理方向
這次我走訪的10家餐廳橫跨不同料理類型,從高質感牛排館到巷弄系早午餐,每一間都有自己獨特的風格。為了讓整體比較更客觀,我依照以下四大面向進行評比,並搭配實際用餐體驗來打分。
整體而言,我希望這份評比不只是「哪家好吃」,而是幫你在不同情境下(約會、家庭聚餐、朋友小聚、商業午餐)都能快速找到合適的選擇。畢竟,美食不只是味覺的滿足,更是一段段與朋友共享的生活記憶。 10間臺中公益路餐廳評比懶人包公益路向來是臺中人聚餐的首選地段,從火鍋、燒肉到中式料理與早午餐,每走幾步就有驚喜。以下是我實際造訪過的10間代表性餐廳清單,橫跨平價、創意、高級各路風格。
一頭牛日式燒肉|炭香濃郁的和牛饗宴,約會聚餐首選
走在公益路上,很難不被 一頭牛日式燒肉 的木質外觀吸引。低調卻不失質感的門面,搭配昏黃燈光與暖色調的內裝,讓人一進門就感受到濃濃的日式職人氛圍。店內空間不大,但桌距規劃得宜,每桌皆設有獨立排煙設備,烤肉時完全不怕滿身油煙味。 餐點特色
一頭牛的靈魂,絕對是他們招牌的「三國和牛拼盤」。 用餐體驗整體節奏掌握得非常好。店員會在你剛想烤下一片肉時貼心遞上夾子、幫忙換烤網,讓人完全不用分心。整場用餐過程就像一場表演,從視覺、嗅覺到味覺都被滿足。 綜合評分
地址:408臺中市南屯區公益路二段162號電話:04-23206800 官網:http://www.marihuana.com.tw/yakiniku/index.html 小結語一頭牛日式燒肉不僅是「吃肉的地方」,更像是一場五感盛宴。從進門那一刻到最後一道甜點,都能感受到他們對細節的用心。 TANG Zhan 湯棧|文青系火鍋代表,麻香湯底與視覺美感並重
在公益路這條美食戰線上,TANG Zhan 湯棧 是讓人一眼就會想走進去的那一種。 餐點特色
湯棧最有名的當然是它的「麻香鍋」。 用餐體驗整體氛圍比一般火鍋店更有質感。 綜合評分
地址:408臺中市南屯區公益路二段248號電話:04-22580617 官網:https://www.facebook.com/TangZhan.tw/ 小結語TANG Zhan 湯棧 把傳統火鍋做出新的樣貌保留臺式鍋物的溫度,又結合現代風格與細節服務,讓吃鍋這件事變得更有品味。 如果你想找一間兼具「好吃、好拍、好放鬆」的火鍋店,湯棧會是公益路上最有風格的選擇之一。 NINI 尼尼臺中店|明亮寬敞的義式早午餐天堂
如果說前兩間是肉食愛好者的天堂,那 NINI 尼尼臺中店 絕對是想放鬆、聊聊天的好地方。餐廳外觀以白色系與大片玻璃窗為主,陽光灑進室內,讓人一踏入就有種度假般的輕盈感。假日早午餐時段特別熱鬧,建議提早訂位。 餐點特色
NINI 的菜單融合義式與臺灣人口味,選擇多樣且份量十足。主打的 松露燉飯 濃郁卻不膩口,米芯保留微Q口感;而 香蒜海鮮義大利麵 則以新鮮白蝦、花枝與淡菜搭配微辣蒜香,口感層次豐富。 用餐體驗店內氣氛輕鬆不拘謹,無論是一個人帶電腦工作、或朋友聚餐,都能找到舒服角落。餐點上桌速度穩定,服務人員態度親切、補水與收盤都非常主動。整體節奏讓人覺得「時間變慢了」,很適合想遠離忙碌日常的人。 綜合評分
地址:40861臺中市南屯區公益路二段18號電話:04-23288498 小結語NINI 尼尼臺中店是一間能讓人放下手機、慢慢吃飯的餐廳。餐點不追求浮誇,而是以「剛剛好」的份量與風味,陪伴每個平凡午後。如果你在找一間能邊吃邊聊天、拍照也漂亮的早午餐店,NINI 會是你在公益路上最不費力的幸福選擇。 加分100%浜中特選昆布鍋物|平價卻用心的湯頭系火鍋,家庭聚餐好選擇
在公益路這條高質感餐廳林立的戰場上,加分100%浜中特選昆布鍋物 走的是截然不同的路線。它沒有浮誇的裝潢、也沒有高價位的套餐,但靠著實在的湯頭與親切的服務,默默吸引許多回頭客。每到用餐時間,總能看到家庭或情侶三兩成群地圍著鍋邊聊天。 餐點特色
主打 北海道浜中昆布湯底,湯頭清澈卻不單薄,越煮越能喝出海藻與柴魚的自然香氣。 用餐體驗整體氛圍偏家庭取向,桌距寬敞、座位舒適,帶小孩來也不覺擁擠。店員態度親切,補湯、收盤都很勤快,給人一種「被照顧著」的安心感。 綜合評分
地址:403臺中市西區公益路288號電話:0910855180 小結語加分100%浜中特選昆布鍋物是一間「不浮誇、但會讓人想再訪」的火鍋店。它不追求豪華擺盤,而是用最簡單的湯頭與新鮮食材,傳遞出家常卻不平凡的溫度。 印月餐廳|中式料理的藝術演繹,宴客與家庭聚會首選
說到臺中公益路的中式料理代表,印月餐廳 絕對是榜上有名。這間開業多年的餐廳以「中菜西吃」的概念聞名,把傳統中式料理以現代手法重新詮釋。從建築外觀到餐具擺設,每個細節都散發著低調的典雅氣息。 餐點特色
印月最令人印象深刻的是他們將傳統中菜融入創意手法。 用餐體驗服務方面完全對得起餐廳的高級定位。從入座、點餐到上菜節奏,都拿捏得恰如其分。每道菜都會有服務人員細心介紹食材與吃法,讓人感受到「被款待」的尊榮感。 綜合評分
地址:408臺中市南屯區公益路二段818號電話:0422511155 小結語印月餐廳是一間「不只吃飯,更像品味生活」的地方。 KoDō 和牛燒肉|極致職人精神,專為儀式感與頂級味覺而生
若要形容 KoDō 和牛燒肉 的用餐體驗,一句話足以總結——「像在欣賞一場關於肉的表演」。 餐點特色
這裡主打 日本A5和牛冷藏肉,以「精切厚燒」的方式呈現。 用餐體驗KoDō 的最大特色是「儀式感」。 綜合評分
地址:403臺中市西區公益路260號電話:0423220312 官網:https://www.facebook.com/kodo2018/ 小結語KoDō 和牛燒肉不是日常餐廳,而是一場體驗。 永心鳳茶|在茶香裡用餐的優雅時光,臺味早午餐的新詮釋
走進 永心鳳茶公益店,彷彿進入一間有氣質的茶館。 餐點特色
永心鳳茶的餐點結合中式靈魂與西式擺盤,無論是「炸雞腿飯」還是「紅玉紅茶拿鐵」,都能讓人感受到熟悉卻不平凡的味道。 用餐體驗店內服務人員態度溫和,對茶品介紹詳盡。上餐節奏剛好,不急不徐。 綜合評分
地址:40360臺中市西區公益路68號三樓(勤美誠品)電話:0423221118 小結語永心鳳茶讓人重新定義「臺味」。 三希樓|老饕級江浙功夫菜,穩重又帶人情味的中式饗宴
位於公益路上的 三希樓 是許多臺中老饕的口袋名單。 餐點特色
三希樓的菜色以 江浙與港式料理 為主,兼顧傳統與現代風味。 用餐體驗三希樓的服務給人一種老派但貼心的感覺。 綜合評分
地址:408臺中市南屯區公益路二段95號電話:0423202322 官網:https://www.sanxilou.com.tw/ 小結語三希樓是一間「吃得出功夫」的餐廳。 一笈壽司|低調奢華的無菜單日料,職人手藝詮釋旬味極致
在熱鬧的公益路上,一笈壽司 低調得幾乎不顯眼。 餐點特色
一笈壽司採 Omakase(無菜單料理) 形式,每一餐都由主廚根據當日食材設計。 用餐體驗整場用餐約90分鐘,節奏緩慢但沉穩。 綜合評分
地址:408臺中市南屯區公益路二段25號電話:0423206368 官網:https://www.facebook.com/YIJI.sushi/ 小結語一笈壽司是一間真正讓人「放慢呼吸」的餐廳。 茶六燒肉堂|人氣爆棚的和牛燒肉聖地,肉香與幸福感同時滿分
若要票選公益路上「最難訂位」的餐廳,茶六燒肉堂 絕對名列前茅。 餐點特色
茶六主打 和牛燒肉套餐,價格約落在 $700–$1000 間,份量與品質兼具。 用餐體驗茶六的服務效率相當高。店員親切、換網勤快、補水速度快,整場用餐流程流暢無壓力。 綜合評分
地址:403臺中市西區公益路268號電話:0423281167 官網:https://inline.app/booking/-L93VSXuz8o86ahWDRg0:inline-live-karuizawa/-LUYUEIOYwa7GCUpAFWA 小結語茶六燒肉堂用「穩定品質+輕奢氛圍」抓住了臺中年輕族群的心。 吃完10家公益路餐廳後的心得與結語吃完這十家餐廳後,臺中公益路不只是一條美食街,而是一段生活風景線。 有的餐廳講究細膩與儀式感,像 一頭牛日式燒肉 與 一笈壽司,讓人感受到食材最純粹的美好 有的則以親切與溫度打動人心,像 加分昆布鍋物、永心鳳茶,讓人明白吃飯不只是為了飽足,而是一種被照顧的幸福。 而像茶六燒肉堂、TANG Zhan 湯棧 這類人氣名店,則用穩定的品質與熱絡的氛圍,成為許多臺中人心中「想吃肉就去那裡」的代名詞。 這十家店,構成了公益路最動人的縮影 有華麗的,也有溫柔的;有傳統的,也有創新的。 每一家都在自己的風格裡發光,讓人吃到的不只是料理,而是一種生活的溫度與節奏。 對我而言,這不僅是一場美食旅程,更是一趟關於「臺中味道」的回憶之旅。 FAQ:關於臺中公益路美食常見問題Q1:公益路哪一區的餐廳最集中? Q2:需要提前訂位嗎? 最後的話若要用一句話形容這趟美食之旅,我會說: NINI 尼尼臺中店有什麼推薦搭配? 如果你也和我一樣喜歡用味蕾探索一座城市,那就把這篇公益路美食攻略收藏起來吧。一頭牛日式燒肉春酒菜色豐富嗎? 無論是約會、慶生、家庭聚餐,或只是想犒賞一下辛苦的自己——這條路上永遠會有一間剛剛好的餐廳在等你。一頭牛日式燒肉有生日驚喜或畫盤嗎? 下一餐,不妨從這10家開始。加分100%浜中特選昆布鍋物停車方便嗎? 打開手機、約上朋友,讓公益路成為你生活裡最容易抵達的小確幸。TANG Zhan 湯棧服務態度如何? 如果你有私心愛店,也歡迎留言分享,永心鳳茶甜點好吃嗎? 你的推薦,可能讓我下一趟美食旅程變得更精彩。永心鳳茶家庭過節聚會適合嗎? A groundbreaking discovery of a 550 million-year-old sea sponge fossil offers new insights into sponge evolution and guides future fossil searches. Reconstructed life position of Helicolocellus on Ediacaran seafloor. Credit: Yuan Xunlai The research offers new insights into the early evolution of animals. Researchers led by Shuhai Xiao at Virginia Tech have discovered a 550 million-year-old sea sponge fossil, shedding light on a 160 million-year gap in the fossil record. This fossil, which suggests early sponges lacked mineral skeletons, provides new insights into the evolution of one of the earliest animals and influences how paleontologists search for ancient sponges. At first glance, the simple sea sponge is no creature of mystery. No brain. No gut. No problem dating it back 700 million years. Yet convincing sponge fossils only go back about 540 million years, leaving a 160 million-year gap in the fossil record. In a paper released June 5 in the journal Nature, Virginia Tech geobiologist Shuhai Xiao and collaborators reported a 550 million-year-old sea sponge from the “lost years” and proposed that the earliest sea sponges had not yet developed mineral skeletons, offering new parameters to the search for the missing fossils. The mystery of the missing sea sponges centered on a paradox. Molecular clock estimates, which involve measuring the number of genetic mutations that accumulate over time, indicate that sponges must have evolved about 700 million years ago. And yet there had been no convincing sponge fossils found in rocks that old. For years, this conundrum was the subject of debate among zoologists and paleontologists. This latest discovery fills in the evolutionary family tree of one of the earliest animals, explaining its apparent absence in older rocks and connecting the dots back to Darwin’s questions about when it evolved. Xiao’s Groundbreaking Find Xiao, who recently was inducted into the National Academy of Sciences, first laid eyes on the fossil five years ago, when a collaborator texted him a picture of a specimen excavated along the Yangtze River in China. “I had never seen anything like it before,” said Xiao, a faculty member in the College of Science. “Almost immediately, I realized that it was something new.” Xiao and collaborators from the University of Cambridge and the Nanjing Institute of Geology and Paleontology began ruling out possibilities one by one: not a sea squirt, not a sea anemone, not a coral. They wondered, could it be an elusive ancient sea sponge? Virginia Tech geobiologist Shuhai Xiao and collaborators reported a 550 million-year-old sea sponge fossil, filling in a gap in the evolutionary family tree of one of the earliest animals. Photo by Spencer Coppage for Virginia Tech. Credit: Spencer Coppage for Virginia Tech In an earlier study published in 2019, Xiao and his team suggested that early sponges left no fossils because they had not evolved the ability to generate the hard needle-like structures, known as spicules, that characterize sea sponges today. Xiao’s team members traced sponge evolution through the fossil record. As they went further back in time, sponge spicules were increasingly more organic in composition and less mineralized. “If you extrapolate back, then perhaps the first ones were soft-bodied creatures with entirely organic skeletons and no minerals at all,” Xiao said. “If this was true, they wouldn’t survive fossilization except under very special circumstances where rapid fossilization outcompeted degradation.” Later in 2019, Xiao’s international research group found a sponge fossil preserved in just such a circumstance: a thin bed of marine carbonate rocks known to preserve abundant soft-bodied animals, including some of the earliest mobile animals. “Most often, this type of fossil would be lost to the fossil record,” Xiao said. “The new finding offers a window into early animals before they developed hard parts.” New Fossil Discovery and Its Implications The surface of the new sponge fossil is studded with an intricate array of regular boxes, each divided into smaller, identical boxes. “This specific pattern suggests our fossilized sea sponge is most closely related to a certain species of glass sponge,” said Xiaopeng Wang, a postdoctoral researcher at the Nanjing Institute of Geology and Paleontology and the University of Cambridge. Another unexpected aspect of the new sponge fossil is its size. “When searching for fossils of early sponges I had expected them to be very small,” said Alex Liu, a collaborator from the University of Cambridge. “The new fossil is about 15 inches long with a relatively complex, conical body plan, which challenged many of our expectations for the appearance of early sponges.” While the fossil fills in some of the missing years, it also provides researchers with important guidance about how to search for these fossils — which will hopefully extend understanding of early animal evolution further back in time. “The discovery indicates that perhaps the first sponges were spongey but not glassy,” Xiao said. “We now know that we need to broaden our view when looking for early sponges.” Reference: “A late-Ediacaran crown-group sponge animal” by Xiaopeng Wang, Alexander G. Liu, Zhe Chen, Chengxi Wu, Yarong Liu, Bin Wan, Ke Pang, Chuanming Zhou, Xunlai Yuan and Shuhai Xiao, 5 June 2024, Nature. DOI: 10.1038/s41586-024-07520-y Orange Monarch Butterfly A Spartan-led research team has uncovered an answer — at least for the most recent population decline — with a huge assist from volunteers. Michigan State University ecologists led an international research partnership of professional and volunteer scientists to reveal new insights into what’s driving the already-dwindling population of eastern monarch butterflies even lower. Between 2004 and 2018, the changing climate at the monarch’s spring and summer breeding grounds has had the most significant impact on this declining population. In fact, the effects of climate change have been nearly seven times more significant than other contributors, such as habitat loss. The team published its report today (July 19, 2021) in the journal Nature Ecology & Evolution. “What we do is develop models to understand why monarchs are declining and what’s happening to biodiversity in general,” said Erin Zylstra, the study’s lead author. Zylstra is a postdoctoral researcher in the Department of Integrative Biology and the Ecology, Evolution and Behavior Program, both in MSU’s College of Natural Science. A monarch butterfly sits atop flowering swamp milkweed in a Michigan garden. Credit: Jim Hudgins/USFWS “A lot of it is not good news. But in understanding the reasons why a species is declining, there is also a message of hope: there’s something we can do about it,” said Zylstra. “We did this study not just to say what’s causing changes in the monarch butterfly population, but also learn how we can make it better.” Understanding the monarch decline and doing what we can to reverse it is important not just for preserving biodiversity, but also because insects are prolific pollinators. The eastern population of monarchs migrates between Mexico and the eastern half of the U.S. and southern Canada every year — with summer layovers in Michigan and other U.S. states. Since the mid-1990s, though, there has been a dramatic decline in their population, with worst-case estimates projecting that the current population is a mere 20% of what it was just a few decades ago. The mid-1990s through the mid-2000s saw the most dramatic decline, coinciding with a period when glyphosate weed killers became hugely popular in the agricultural industry. Farmers grew crops that were engineered to be resistant to glyphosate, allowing them to apply the chemical widely, decimating milkweed plants that are the sole host and food source for monarch caterpillars. The prevailing theory during that period has been that the loss of milkweed from agricultural areas was responsible for the severe declines. Since then, monarch populations have continued to fall. Although glyphosate-driven milkweed loss remained one possible explanation, other theories emerged over time. Today, researchers are divided on what’s stunting the monarch’s population. Some experts estimate that the eastern monarch population size has been reduced by more than 80% since the 1990s. Credit: Liz West About a decade ago, however, Leslie Ries of Georgetown University and Elise Zipkin, now an associate professor of integrative biology at MSU, came to a realization. Researchers and volunteers were collecting an increasing amount of data that could help make a more definitive determination of what’s driving the monarch population decline. “People have different hypotheses,” said Zipkin, the senior author on the new study and director of the Ecology, Evolution and Behavior Program. “So we tried to come in as an impartial team, take the time and put all these pieces together to really parse out the contributions of various stressors.” Part of what makes it so difficult to understand the decline is the eastern monarch’s complicated life cycle. These monarchs spend their winters, November through February, in central Mexico. When the weather starts to warm, they head north to the southeastern U.S., particularly eastern Texas. Once there, the adults breed, lay eggs, and then die. It’s the next generation that continues the migration, starting in about May, flying to the Midwest and parts of Canada, where they produce two to three more generations. The butterflies that develop in late August shut down their reproductive systems and spend their energy migrating south back to Mexico, where the cycle begins anew. With support from the National Science Foundation, the team analyzed data from more than 18,000 surveys of monarchs in different locations across the midwestern U.S., central Mexico, and southern Canada between 1994 and 2018. Most of these surveys were performed by local volunteers who helped count adult butterflies. “Almost all of those data were not collected by professional scientists and that is really, really cool,” Zipkin said. “There is no group of scientists out there that could collect all the data that we needed. But these volunteers go out every year and record data in a very structured way. That’s the only way we could do this analysis.” “The level of expertise among the volunteers is really incredible,” said Zylstra. Zylstra led the effort to develop a model based on these observations and draw meaningful conclusions. In particular, the team was interested in what the data said about the three leading theories behind the eastern monarch’s population decline: milkweed habitat loss, mortality during the autumn migration and resettlement on the overwintering grounds, and climate change’s detrimental impact on monarch breeding success. “I think that everyone is partially right. All of these things do play some role. With monarchs, everything is nuanced, and everything is tricky,” said Zylstra. “But in recent years, as glyphosate applications have remained more stable, although still very high, there is strong evidence that population changes are driven by climate on the spring and summer breeding grounds.” Each of these hypotheses can contribute to lost butterflies at smaller scales, Zylstra explained. But looking at the problem holistically — across many years and multiple countries — makes it clear that climate change has been the dominant disruptive force since 2004. Unfortunately, there isn’t enough data in agricultural regions to definitively determine what happened between the mid-1990s and the mid-2000s, the period of the most pronounced decline. To get the full picture of the population decline, the team needed to understand the dynamics of many generations in many locations. Hence the need for thousands upon thousands of surveys. The herculean effort of collecting and making sense of this data has also reaped two large rewards. First, by proving the model’s potential to tease out population dynamics for something as complicated as the eastern monarch, the team is optimistic it can adapt the model to understand what’s driving population changes in other species, too. Secondly, this understanding should help inform where conservation efforts can provide the greatest benefit for the eastern monarch’s numbers. “This study gives us information on where to spend our limited dollars on restoration,” Zylstra said. Although we can’t simply turn off climate change, we can, for example, focus on restoring milkweed in the regions that remain most conducive to monarch reproduction despite warming temperatures and shifting precipitation patterns, she said. That said, anything we can do to curb climate change will also improve the outlook for both monarchs and humanity, she added. And although curbing climate change is a huge lift, Zipkin pointed out that this study reminds us of the power of partnerships to confront large challenges. “We’re talking about three countries that this is directly affecting: the U.S., Canada and Mexico. It’s not something that we have to do alone,” Zipkin said. “Partnerships do matter.” Working out what’s behind the population decline proved that. Between the professional scientists and volunteer data collectors, residents of all three countries made this study possible. “You need those kinds of partnerships. You need people with different expertise. We showed that’s how we can figure out what’s going on with monarchs. Now, what can we do with conservation?” Zipkin asked. “We can work together.” Reference: “Changes in climate drive recent monarch butterfly dynamics” by Erin R. Zylstra, Leslie Ries, Naresh Neupane, Sarah P. Saunders, M. Isabel Ramírez, Eduardo Rendón-Salinas, Karen S. Oberhauser, Matthew T. Farr and Elise F. Zipkin, 19 July 2021, Nature Ecology & Evolution. DOI: 10.1038/s41559-021-01504-1 Ichthyosporeans Sphaeroforma arctica and Chromosphaera perkinsii undergoing mitosis, depicted as two halves of a cell, rendered in Haeckel-inspired tones and a naturalist style. Credit: Nirupa Rao New findings by EMBL researchers reveal how animals and fungi have developed distinct cell division processes to accommodate their varied life cycles. Cell division is a crucial process for all life forms, from bacteria to blue whales, enabling growth, reproduction, and the continuation of species. Despite its universal nature, the methods of cell division vary significantly across organisms. A recent study by EMBL Heidelberg’s Dey group, along with their collaborators and published in Nature, investigates the evolution of cell division methods in organisms closely related to fungi and animals. For the first time, this research demonstrates the connection between an organism’s life cycle and its cell division techniques. Despite last sharing a common ancestor over a billion years ago, animals and fungi are similar in many ways. Both belong to a broader group called ‘eukaryotes’ – organisms whose cells store their genetic material inside a closed compartment called the ‘nucleus’. The two differ, however, in how they carry out many physiological processes, including the most common type of cell division – mitosis. Most animal cells undergo ‘open’ mitosis, in which the nuclear envelope – the two-layered membrane separating the nucleus from the rest of the cell – breaks down when cell division begins. However, most fungi use a different form of cell division – called ‘closed’ mitosis – in which the nuclear envelope remains intact throughout the division process. However, very little is known about why or how these two distinct modes of cell division evolved and what factors determine which mode would be predominantly followed by a particular species. Research Collaboration and Methodology This question captured the attention of scientists in the Dey Group at EMBL Heidelberg, who investigated the evolutionary origins of the nucleus and cell division. “By studying diversity across organisms and reconstructing how things evolved, we can begin to ask if there are universal rules that underlie how such fundamental biological processes work,” said Gautam Dey, Group Leader at EMBL Heidelberg. In 2020, during the COVID-19 lockdown, an unexpected path to answering this question grew out of discussions between Dey’s group and Omaya Dudin’s team at the Swiss Federal Institute of Technology (EPFL), Lausanne. Dudin is an expert in an unusual group of marine protists – Ichthyosporea. Ichthyosporea are closely related to both fungi and animals, with different species lying closer to one or the other group on the evolutionary family tree. The Dey and Dudin groups, in collaboration with Yannick Schwab’s group at EMBL Heidelberg, decided to probe the origins of open and closed mitosis using Ichthyosporea as a model. Interestingly, the researchers found that certain species of Ichthyosporea undergo closed mitosis while others undergo open mitosis. Therefore, by comparing and contrasting their biology, they could obtain insights into how organisms adapt to and use these two cell division modes. Hiral Shah, an EIPOD fellow working across the three groups, led the study. “Having recognized very early that Ichthyosporea, with their many nuclei and key evolutionary position between animal and fungi, were well-suited for addressing this question, it was clear that this would require bringing together the cell biological and technical expertise of the Dey, Dudin, and Schwab groups, and this is exactly what the EIPOD fellowship allowed me to do,” said Shah. Upon closely probing the mechanisms of cell division in two species of Ichthyosporeans, the researchers found that one species, S. arctica, favors closed mitosis, similar to fungi. S. arctica also has a life cycle with a multinucleate stage, where many nuclei exist within the same cell – another feature shared with many fungal species as well as the embryonic stages of certain animals, such as fruit flies. Another species, C. perkinsii, turned out to be much more animal-like, relying on open mitosis. Its life cycle involves primarily mononucleate stages, where each cell has a single nucleus. Implications for Understanding Eukaryotic Cell Division “Our findings led to the key inference that the way animal cells do mitosis evolved hundreds of millions of years before animals did. The work therefore has direct implications for our general understanding of how eukaryotic cell division mechanisms evolve and diversify in the context of diverse life cycles, and provides a key piece of the animal origins puzzle,” said Dey. The study combined expertise in comparative phylogenetics, electron microscopy (from the Schwab Group and the electron microscopy core facility (EMCF) at EMBL Heidelberg), and ultrastructure expansion microscopy, a technique that involves embedding biological samples in a transparent gel and physically expanding it. Additionally, Eelco Tromer, from the University of Groningen in the Netherlands, and Iva Tolic, from the Ruđer Bošković Institute in Zagreb, Croatia, provided expertise in comparative genomics and mitotic spindle geometry and biophysics, respectively. “The first time we saw an expanded S. arctica nucleus, we knew this technique would change the way we study the cell biology of non-model organisms,” said Shah, who brought back the expansion microscopy technique to EMBL Heidelberg after a stint at the Dudin lab. Dey agrees: “A key breakthrough in this study came with our application of ultrastructure expansion microscopy (U-ExM) to the analysis of the ichthyosporean cytoskeleton. Without U-ExM, immunofluorescence and most dye labeling protocols do not work in this understudied group of marine holozoans.” This study also demonstrates the importance of going beyond traditional model organism research when trying to answer broad biological questions, and the potential insights further research on Ichthyosporean systems might reveal. “Ichthyosporean development displays remarkable diversity,” said Dudin. “On one hand, several species exhibit developmental patterns similar to those of early insect embryos, featuring multinucleated stages and synchronized cellularisation. On the other hand, C. perkinsii undergoes cleavage division, symmetry breaking, and forms multicellular colonies with distinct cell types, similar to the ‘canonical view’ of early animal embryos. This diversity not only helps in understanding the path to animals but also offers a fascinating opportunity for comparative embryology outside of animals, which is, in itself, very exciting.” The project’s inherent interdisciplinarity served not only as a good testbed for this type of collaborative research but also for the unique postdoctoral training afforded at EMBL. “Hiral’s project nicely illustrates the virtue of the EIPOD program: a truly interdisciplinary project, bundling innovative biology with advanced methods, all contributing to a truly spectacular personal development,” said Schwab. “We (as mentors) witnessed the birth of a strong scientist, and this is really rewarding!” The Dey, Dudin, and Schwab groups are currently also collaborating on the PlanExM project, part of the TREC expedition – an EMBL-led initiative to explore and sample the biodiversity along European coasts. PlanExM aims to apply expansion microscopy to study the ultrastructural diversity of marine protists directly in environmental samples. “The project grew out of the realization that U-ExM is going to be a game-changer for protistology and marine microbiology,” said Dey. With this project, as well as others currently underway, the research team hopes to shed further light on the diversity of life on Earth and the evolution of the fundamental biological processes. Reference: “Life-cycle-coupled evolution of mitosis in close relatives of animals” by Hiral Shah, Marine Olivetta, Chandni Bhickta, Paolo Ronchi, Monika Trupinić, Eelco C. Tromer, Iva M. Tolić, Yannick Schwab, Omaya Dudin and Gautam Dey, 22 May 2024, Nature. DOI: 10.1038/s41586-024-07430-z RRG455KLJIEVEWWF NINI 尼尼台中店第一次來要點什麼? 》台中公益路高分美食推薦|10間絕對不踩雷茶六燒肉堂單點比較好嗎? 》公益路10家必訪餐廳|吃貨必備指南加分100%浜中特選昆布鍋物商務聚餐適合嗎? 》公益路美食最佳選擇|10家餐廳逐一分析 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 最新創作 |
|
||||
|
||||
|
||||
|
||||
|
||||



























